Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 14(2): 1665-1681, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-31922724

RESUMEN

Despite the common knowledge that the reticuloendothelial system is largely responsible for blood clearance of systemically administered nanoparticles, the sequestration mechanism remains a "black box". Using transgenic zebrafish embryos with cell type-specific fluorescent reporters and fluorescently labeled model nanoparticles (70 nm SiO2), we here demonstrate simultaneous three-color in vivo imaging of intravenously injected nanoparticles, macrophages, and scavenger endothelial cells (SECs). The trafficking processes were further revealed at ultrastructural resolution by transmission electron microscopy. We also find, using a correlative light-electron microscopy approach, that macrophages rapidly sequester nanoparticles via membrane adhesion and endocytosis (including macropinocytosis) within minutes after injection. In contrast, SECs trap single nanoparticles via scavenger receptor-mediated endocytosis, resulting in gradual sequestration with a time scale of hours. Inhibition of the scavenger receptors prevented SECs from accumulating nanoparticles but enhanced uptake in macrophages, indicating the competitive nature of nanoparticle clearance in vivo. To directly quantify the relative contributions of the two cell types to overall nanoparticle sequestration, the differential sequestration kinetics was studied within the first 30 min post-injection. This revealed a much higher and increasing relative contribution of SECs, as they by far outnumber macrophages in zebrafish embryos, suggesting the importance of the macrophage:SECs ratio in a given tissue. Further characterizing macrophages on their efficiency in nanoparticle clearance, we show that inflammatory stimuli diminish the uptake of nanoparticles per cell. Our study demonstrates the strength of transgenic zebrafish embryos for intravital real-time and ultrastructural imaging of nanomaterials that may provide mechanistic insights into nanoparticle clearance in rodent models and humans.


Asunto(s)
Células Endoteliales/química , Macrófagos/química , Nanopartículas/metabolismo , Dióxido de Silicio/metabolismo , Animales , Células Endoteliales/metabolismo , Cinética , Macrófagos/metabolismo , Nanopartículas/química , Tamaño de la Partícula , Dióxido de Silicio/química , Propiedades de Superficie , Factores de Tiempo , Pez Cebra/embriología
2.
J Vis Exp ; (139)2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30247481

RESUMEN

Due to its high resolution, electron microscopy (EM) is an indispensable tool for virologists. However, one of the main difficulties when analyzing virus-infected or transfected cells via EM are the low efficiencies of infection or transfection, hindering the examination of these cells. In order to overcome this difficulty, light microscopy (LM) can be performed first to allocate the subpopulation of infected or transfected cells. Thus, taking advantage of the use of fluorescent proteins (FPs) fused to viral proteins, LM is used here to record the positions of the "positive-transfected" cells, expressing a FP and growing on a support with an alphanumeric pattern. Subsequently, cells are further processed for EM via high pressure freezing (HPF), freeze substitution (FS) and resin embedding. The ultra-rapid freezing step ensures excellent membrane preservation of the selected cells that can then be analyzed at the ultrastructural level by transmission electron microscopy (TEM). Here, a step-by-step correlative light electron microscopy (CLEM) workflow is provided, describing sample preparation, imaging and correlation in detail. The experimental design can be also applied to address many cell biology questions.


Asunto(s)
Células Inmovilizadas/metabolismo , Técnicas Histológicas/métodos , Microscopía Electrónica/métodos , Humanos
3.
Sci Rep ; 7(1): 13583, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-29051533

RESUMEN

Many areas of biological research demand the combined use of different imaging modalities to cover a wide range of magnifications and measurements or to place fluorescent patterns into an ultrastructural context. A technically difficult problem is the efficient specimen transfer between different imaging modalities without losing the coordinates of the regions-of-interest (ROI). Here, we report a new and highly sensitive integrated system that combines a custom designed microscope with an ultramicrotome for in-resin-fluorescence detection in blocks, ribbons and sections on EM-grids. Although operating with long-distance lenses, this system achieves a very high light sensitivity. Our instrumental set-up and operating workflow are designed to investigate rare events in large tissue volumes. Applications range from studies of individual immune, stem and cancer cells to the investigation of non-uniform subcellular processes. As a use case, we present the ultrastructure of a single membrane repair patch on a muscle fiber in intact muscle in a whole animal context.

4.
J Cell Sci ; 129(14): 2713-8, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27246242

RESUMEN

Centrioles are core components of centrosomes, the major microtubule-organizing centers of animal cells, and act as basal bodies for cilia formation. Control of centriole number is therefore crucial for genome stability and embryogenesis. Centriole duplication requires the serine/threonine protein kinase Plk4. Here, we identify Cep78 as a human centrosomal protein and a new interaction partner of Plk4. Cep78 is mainly a centriolar protein that localizes to the centriolar wall. Furthermore, we find that Plk4 binds to Cep78 through its N-terminal domain but that Cep78 is not an in vitro Plk4 substrate. Cep78 colocalizes with Plk4 at centrioles and is required for Plk4-induced centriole overduplication. Interestingly, upon depletion of Cep78, newly synthesized Plk4 is not localized to centrosomes. Our results suggest that the interaction between Cep78 and the N-terminal catalytic domain of Plk4 is a new and important element in the centrosome overduplication process.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células HeLa , Humanos , Interfase , Unión Proteica , Transporte de Proteínas
5.
PLoS One ; 9(12): e113222, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25438148

RESUMEN

Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts' opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort.


Asunto(s)
Tomografía con Microscopio Electrónico , Procesamiento de Imagen Asistido por Computador/métodos , Microtúbulos/metabolismo , Algoritmos , Animales , Automatización , Caenorhabditis elegans/citología , Elasticidad , Oocitos/citología , Huso Acromático/metabolismo , Trypanosoma brucei brucei/citología , Xenopus laevis
6.
Nat Commun ; 5: 5585, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25519239

RESUMEN

Mitochondrial diseases are systemic, prevalent and often fatal; yet treatments remain scarce. Identifying molecular intervention points that can be therapeutically targeted remains a major challenge, which we confronted via a screening assay we developed. Using yeast models of mitochondrial ATP synthase disorders, we screened a drug repurposing library, and applied genomic and biochemical techniques to identify pathways of interest. Here we demonstrate that modulating the sorting of nuclear-encoded proteins into mitochondria, mediated by the TIM23 complex, proves therapeutic in both yeast and patient-derived cells exhibiting ATP synthase deficiency. Targeting TIM23-dependent protein sorting improves an array of phenotypes associated with ATP synthase disorders, including biogenesis and activity of the oxidative phosphorylation machinery. Our study establishes mitochondrial protein sorting as an intervention point for ATP synthase disorders, and because of the central role of this pathway in mitochondrial biogenesis, it holds broad value for the treatment of mitochondrial diseases.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Antifúngicos/farmacología , Núcleo Celular/metabolismo , Bases de Datos Farmacéuticas , Reposicionamiento de Medicamentos , Regulación de la Expresión Génica , Humanos , Proteínas de Transporte de Membrana/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , ATPasas de Translocación de Protón Mitocondriales/deficiencia , Terapia Molecular Dirigida , Mutación , Proteínas Nucleares/genética , Fosforilación Oxidativa/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Piridinas/farmacología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Tionas/farmacología
7.
Elife ; 3: e03398, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25521247

RESUMEN

An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This 'pushing' mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length.


Asunto(s)
Microtúbulos/fisiología , Schizosaccharomyces/fisiología , Huso Acromático/fisiología , Anafase , Transporte Biológico , Ciclo Celular , Segregación Cromosómica , Fuerza Compresiva , Tomografía con Microscopio Electrónico , Microtúbulos/ultraestructura , Schizosaccharomyces/ultraestructura , Huso Acromático/ultraestructura , Imagen de Lapso de Tiempo
8.
Methods Cell Biol ; 124: 111-28, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25287839

RESUMEN

Cryoimmobilization is an optimal method of preserving sample ultrastructure in electron microscopy studies. However, cryoimmobilization is limited to thin samples and this limitation may necessitate the isolation of the structure of interest. For cellular structures that are found in low number, or only during certain phases of the cell cycle, an added benefit of isolation is the possibility to concentrate the structures. We developed a method to perform correlative light and electron microscopy on infrequent isolated subcellular structures. In this chapter, we will describe our protocol that uses a combination of existing techniques and new solutions for the isolation, identification, cryoimmobilization, targeted ultramicrotomy, and imaging of the free-floating meiotic spindles assembled in Xenopus laevis egg extract.


Asunto(s)
Huso Acromático/ultraestructura , Animales , Extractos Celulares , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente/métodos , Microtomía , Oocitos/ultraestructura , Xenopus laevis
9.
Methods Cell Biol ; 124: 259-74, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25287845

RESUMEN

The CryoCapsule is a tool dedicated to correlative light to electron microscopy experiments. Focused on simplifying the specimen manipulation throughout the entire workflow from live-cell imaging to freeze substitution following cryofixation by high pressure freezing, we introduce here a step by step procedure to use the CryoCapsule either with the high pressure freezing machines: HPM010 or the HPM100.


Asunto(s)
Criopreservación , Antígenos CD/biosíntesis , Proteínas Bacterianas/biosíntesis , Línea Celular Tumoral , Humanos , Lectinas Tipo C/biosíntesis , Proteínas Luminiscentes/biosíntesis , Lectinas de Unión a Manosa/biosíntesis , Microscopía Electrónica de Transmisión/instrumentación , Microscopía Electrónica de Transmisión/métodos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Presión , Proteínas Recombinantes de Fusión
10.
Traffic ; 15(6): 700-16, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24533564

RESUMEN

Correlating complementary multiple scale images of the same object is a straightforward means to decipher biological processes. Light microscopy and electron microscopy are the most commonly used imaging techniques, yet despite their complementarity, the experimental procedures available to correlate them are technically complex. We designed and manufactured a new device adapted to many biological specimens, the CryoCapsule, that simplifies the multiple sample preparation steps, which at present separate live cell fluorescence imaging from contextual high-resolution electron microscopy, thus opening new strategies for full correlative light to electron microscopy. We tested the biological application of this highly optimized tool on three different specimens: the in vitro Xenopus laevis mitotic spindle, melanoma cells over-expressing YFP-langerin sequestered in organized membranous subcellular organelles and a pigmented melanocytic cell in which the endosomal system was labeled with internalized fluorescent transferrin.


Asunto(s)
Microscopía por Crioelectrón/métodos , Crioultramicrotomía/instrumentación , Animales , Línea Celular , Microscopía por Crioelectrón/instrumentación , Crioultramicrotomía/métodos , Perros , Endosomas/metabolismo , Endosomas/ultraestructura , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Imagen Óptica/instrumentación , Imagen Óptica/métodos , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Xenopus
11.
Eukaryot Cell ; 12(11): 1423-32, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23771903

RESUMEN

Ashbya gossypii grows as multinucleated and constantly elongating hyphae. Nuclei are in continuous forward and backward motion, also move during mitosis, and frequently bypass each other. Whereas these nuclear movements are well documented, comparatively little is known about the density and morphology of organelles which very likely influence these movements. To understand the three-dimensional subcellular organization of hyphae at high resolution, we performed large-scale electron tomography of the tip regions in A. gossypii. Here, we present a comprehensive space-filling model in which most membrane-limited organelles including nuclei, mitochondria, endosomes, multivesicular bodies, vacuoles, autophagosomes, peroxisomes, and vesicles are modeled. Nuclei revealed different morphologies and protrusions filled by the nucleolus. Mitochondria are very abundant and form a tubular network with a polarized spherical fraction. The organelles of the degradative pathways show a clustered organization. By analyzing vesicle-like bodies, we identified three size classes of electron-dense vesicles (∼200, ∼150, and ∼100 nm) homogeneously distributed in the cytoplasm which most likely represent peroxisomes. Finally, coated and uncoated vesicles with approximately 40-nm diameters show a polarized distribution toward the hyphal tip with the coated vesicles preferentially localizing at the hyphal periphery.


Asunto(s)
Ascomicetos/ultraestructura , Hifa/ultraestructura , Tomografía Computarizada por Rayos X , Núcleo Celular/diagnóstico por imagen , Núcleo Celular/ultraestructura , Vesículas Citoplasmáticas/diagnóstico por imagen , Vesículas Citoplasmáticas/ultraestructura , Mitocondrias/diagnóstico por imagen , Mitocondrias/ultraestructura , Peroxisomas/diagnóstico por imagen , Peroxisomas/ultraestructura
12.
PLoS One ; 8(4): e61698, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23613905

RESUMEN

Mal3p and Tip1p are the fission yeast (Schizosaccharomyces pombe) homologues of EB1 and CLIP-170, two conserved microtubule plus end tracking proteins (+TIPs). These proteins are crucial regulators of microtubule dynamics. Using electron tomography, we carried out a high-resolution analysis of the phenotypes caused by mal3 and tip1 deletions. We describe the 3-dimensional microtubule organization, quantify microtubule end structures and uncover novel defects of the microtubule lattices. We also reveal unexpected structural modifications of the spindle pole bodies (SPBs), the yeast microtubule organizing centers. In both mutants we observe an increased SPB volume and a reduced number of MT/SPB attachments. The discovered defects alter previous interpretations of the mutant phenotypes and provide new insights into the molecular functions of the two protein families.


Asunto(s)
Microtúbulos/metabolismo , Schizosaccharomyces/metabolismo , Tomografía con Microscopio Electrónico , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
13.
Genes Dev ; 27(3): 335-49, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23388829

RESUMEN

Nuclear migration during yeast karyogamy, termed nuclear congression, is required to initiate nuclear fusion. Congression involves a specific regulation of the microtubule minus end-directed kinesin-14 motor Kar3 and a rearrangement of the cytoplasmic microtubule attachment sites at the spindle pole bodies (SPBs). However, how these elements interact to produce the forces necessary for nuclear migration is less clear. We used electron tomography, molecular genetics, quantitative imaging, and first principles modeling to investigate how cytoplasmic microtubules are organized during nuclear congression. We found that Kar3, with the help of its light chain, Cik1, is anchored during mating to the SPB component Spc72 that also serves as a nucleator and anchor for microtubules via their minus ends. Moreover, we show that no direct microtubule-microtubule interactions are required for nuclear migration. Instead, SPB-anchored Kar3 exerts the necessary pulling forces laterally on microtubules emanating from the SPB of the mating partner nucleus. Therefore, a twofold symmetrical application of the core principle that drives nuclear migration in higher cells is used in yeast to drive nuclei toward each other before nuclear fusion.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Huso Acromático/metabolismo , Núcleo Celular/ultraestructura , Simulación por Computador , Proteínas Nucleares/metabolismo , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura
14.
PLoS Pathog ; 8(12): e1003056, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23236278

RESUMEN

All positive strand RNA viruses are known to replicate their genomes in close association with intracellular membranes. In case of the hepatitis C virus (HCV), a member of the family Flaviviridae, infected cells contain accumulations of vesicles forming a membranous web (MW) that is thought to be the site of viral RNA replication. However, little is known about the biogenesis and three-dimensional structure of the MW. In this study we used a combination of immunofluorescence- and electron microscopy (EM)-based methods to analyze the membranous structures induced by HCV in infected cells. We found that the MW is derived primarily from the endoplasmic reticulum (ER) and contains markers of rough ER as well as markers of early and late endosomes, COP vesicles, mitochondria and lipid droplets (LDs). The main constituents of the MW are single and double membrane vesicles (DMVs). The latter predominate and the kinetic of their appearance correlates with kinetics of viral RNA replication. DMVs are induced primarily by NS5A whereas NS4B induces single membrane vesicles arguing that MW formation requires the concerted action of several HCV replicase proteins. Three-dimensional reconstructions identify DMVs as protrusions from the ER membrane into the cytosol, frequently connected to the ER membrane via a neck-like structure. In addition, late in infection multi-membrane vesicles become evident, presumably as a result of a stress-induced reaction. Thus, the morphology of the membranous rearrangements induced in HCV-infected cells resemble those of the unrelated picorna-, corona- and arteriviruses, but are clearly distinct from those of the closely related flaviviruses. These results reveal unexpected similarities between HCV and distantly related positive-strand RNA viruses presumably reflecting similarities in cellular pathways exploited by these viruses to establish their membranous replication factories.


Asunto(s)
Retículo Endoplásmico , Hepacivirus , Hepatitis C , Membranas Intracelulares , ARN Viral/biosíntesis , Línea Celular , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Retículo Endoplásmico/virología , Hepacivirus/fisiología , Hepacivirus/ultraestructura , Hepatitis C/metabolismo , Hepatitis C/patología , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Membranas Intracelulares/virología , Microscopía Electrónica de Transmisión/métodos , Replicación Viral/fisiología
15.
Opt Express ; 20(24): 26778-85, 2012 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-23187532

RESUMEN

We have applied Fresnel Coherent Diffractive Imaging (FCDI) to image an intact pollen grain from Convallaria majalis. This approach allows us to resolve internal structures without the requirement to chemically treat or slice the sample into thin sections. Coherent X-ray diffraction data from this pollen grain-composed of a hologram and higher resolution scattering information-was collected at a photon energy of 1820 eV and reconstructed using an iterative algorithm. A comparison with images recorded using transmission electron microscopy demonstrates that, while the resolution of these images is limited by the available flux and mechanical stability, we observed structures internal to the pollen grain-the intine/exine separations and pore dimensions-finer than 60 nm. The potential of this technique for further biological imaging applications is discussed.


Asunto(s)
Algoritmos , Convallaria/ultraestructura , Imagenología Tridimensional/métodos , Microscopía Electrónica de Transmisión/métodos , Polen/ultraestructura , Difracción de Rayos X/métodos , Holografía
16.
J Cell Sci ; 125(Pt 23): 5830-9, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23015595

RESUMEN

We report the mechanistic basis guiding the migration pattern of multiple nuclei in hyphae of Ashbya gossypii. Using electron tomography, we reconstructed the cytoplasmic microtubule (cMT) cytoskeleton in three tip regions with a total of 13 nuclei and also the spindle microtubules of four mitotic nuclei. Each spindle pole body (SPB) nucleates three cMTs and most cMTs above a certain length grow according to their plus-end structure. Long cMTs closely align for several microns along the cortex, presumably marking regions where dynein generates pulling forces on nuclei. Close proximity between cMTs emanating from adjacent nuclei was not observed. The majority of nuclei carry duplicated side-by-side SPBs, which together emanate an average of six cMTs, in most cases in opposite orientation with respect to the hyphal growth axis. Such cMT arrays explain why many nuclei undergo short-range back and forth movements. Only occasionally do all six cMTs orient in one direction, a precondition for long-range nuclear bypassing. Following mitosis, daughter nuclei carry a single SPB with three cMTs. The increased probability that all three cMTs orient in one direction explains the high rate of nuclear bypassing observed in these nuclei. The A. gossypii mitotic spindle was found to be structurally similar to that of Saccharomyces cerevisiae in terms of nuclear microtubule (nMT) number, length distribution and three-dimensional organization even though the two organisms differ significantly in chromosome number. Our results suggest that two nMTs attach to each kinetochore in A. gossypii and not only one nMT like in S. cerevisiae.


Asunto(s)
Citoesqueleto/metabolismo , Tomografía con Microscopio Electrónico/métodos , Eremothecium/metabolismo , Eremothecium/ultraestructura , Hifa/metabolismo , Microtúbulos/metabolismo , Citoesqueleto/ultraestructura , Hifa/ultraestructura , Microtúbulos/ultraestructura , Huso Acromático/metabolismo , Huso Acromático/ultraestructura
17.
EMBO J ; 31(18): 3678-90, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22850673

RESUMEN

The eukaryotic genome is replicated according to a specific spatio-temporal programme. However, little is known about both its molecular control and biological significance. Here, we identify mouse Rif1 as a key player in the regulation of DNA replication timing. We show that Rif1 deficiency in primary cells results in an unprecedented global alteration of the temporal order of replication. This effect takes place already in the first S-phase after Rif1 deletion and is neither accompanied by alterations in the transcriptional landscape nor by major changes in the biochemical identity of constitutive heterochromatin. In addition, Rif1 deficiency leads to both defective G1/S transition and chromatin re-organization after DNA replication. Together, these data offer a novel insight into the global regulation and biological significance of the replication-timing programme in mammalian cells.


Asunto(s)
Replicación del ADN , Regulación de la Expresión Génica , Proteínas de Unión a Telómeros/genética , Alelos , Animales , Ciclo Celular , Femenino , Fase G1 , Genoma , Genotipo , Heterocromatina/química , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal/métodos , Matriz Nuclear/metabolismo , Fase S , Transcripción Genética
18.
Dev Cell ; 23(2): 412-24, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22898782

RESUMEN

Cilia and flagella are involved in a variety of processes and human diseases, including ciliopathies and sterility. Their motility is often controlled by a central microtubule (MT) pair localized within the ciliary MT-based skeleton, the axoneme. We characterized the formation of the motility apparatus in detail in Drosophila spermatogenesis. We show that assembly of the central MT pair starts prior to the meiotic divisions, with nucleation of a singlet MT within the basal body of a small cilium, and that the second MT of the pair only assembles much later, upon flagella formation. BLD10/CEP135, a conserved player in centriole and flagella biogenesis, can bind and stabilize MTs and is required for the early steps of central MT pair formation. This work describes a genetically tractable system to study motile cilia formation and provides an explanation for BLD10/CEP135's role in assembling highly stable MT-based structures, such as motile axonemes and centrioles.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Flagelos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Masculino , Microscopía Electrónica de Transmisión , Unión Proteica , Espermatogénesis
19.
PLoS One ; 7(5): e36633, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22655028

RESUMEN

Protein-tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed PTP that is anchored to the endoplasmic reticulum (ER). PTP1B dephosphorylates activated receptor tyrosine kinases after endocytosis, as they transit past the ER. However, PTP1B also can access some plasma membrane (PM)-bound substrates at points of cell-cell contact. To explore how PTP1B interacts with such substrates, we utilized quantitative cellular imaging approaches and mathematical modeling of protein mobility. We find that the ER network comes in close proximity to the PM at apparently specialized regions of cell-cell contact, enabling PTP1B to engage substrate(s) at these sites. Studies using PTP1B mutants show that the ER anchor plays an important role in restricting its interactions with PM substrates mainly to regions of cell-cell contact. In addition, treatment with PTP1B inhibitor leads to increased tyrosine phosphorylation of EphA2, a PTP1B substrate, specifically at regions of cell-cell contact. Collectively, our results identify PM-proximal sub-regions of the ER as important sites of cellular signaling regulation by PTP1B.


Asunto(s)
Retículo Endoplásmico/metabolismo , Uniones Intercelulares/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Animales , Células COS , Comunicación Celular , Línea Celular , Chlorocebus aethiops , Retículo Endoplásmico/ultraestructura , Humanos , Uniones Intercelulares/ultraestructura , Modelos Biológicos , Mutación , Estructura Terciaria de Proteína , Proteína Tirosina Fosfatasa no Receptora Tipo 1/análisis , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Transducción de Señal
20.
J Cell Biol ; 197(1): 59-74, 2012 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-22472440

RESUMEN

γ-Tubulin complexes are essential for microtubule (MT) nucleation. The γ-tubulin small complex (γ-TuSC) consists of two molecules of γ-tubulin and one molecule each of Spc97 and Spc98. In vitro, γ-TuSCs oligomerize into spirals of 13 γ-tubulin molecules per turn. However, the properties and numbers of γ-TuSCs at MT nucleation sites in vivo are unclear. In this paper, we show by fluorescence recovery after photobleaching analysis that γ-tubulin was stably integrated into MT nucleation sites and was further stabilized by tubulin binding. Importantly, tubulin showed a stronger interaction with the nucleation site than with the MT plus end, which probably provides the basis for MT nucleation. Quantitative analysis of γ-TuSCs on single MT minus ends argued for nucleation sites consisting of approximately seven γ-TuSCs with approximately three additional γ-tubulin molecules. Nucleation and anchoring of MTs required the same number of γ-tubulin molecules. We suggest that a spiral of seven γ-TuSCs with a slight surplus of γ-tubulin nucleates MTs in vivo.


Asunto(s)
Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Ciclo Celular , Citoplasma/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...