Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(3): 670-673, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300086

RESUMEN

A novel, to the best of our knowledge, tunable multifocal liquid crystal microlens array (TMLCMA) was fabricated with a triple-electrode structure consisting of a large-hole, a small-hole array, and planar electrodes. The electro-optical performances of the TMLCMA are characterized, demonstrating the monofocal convex, multifocal convex, and multifocal concave functions when the TMLCMA is manipulated with various driving schemes. Furthermore, the homogenization of a laser beam is realized using the fabricated TMLCMA. The multifocal convex and multifocal concave functions of the TMLCMA successfully suppress the lattice phenomenon caused by the monofocal microlens array, homogenize the Gaussian beam to a flattop intensity distribution, and broaden the beam size.

2.
Opt Express ; 31(25): 41117-41128, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087519

RESUMEN

Microlens has significant applications in integrated micro-optical systems. Recently, multifocal microlens arrays are expected to extend the depth of field for imaging systems and realize a highly efficient laser beam homogenizer. This work presents what we believe to be a novel approach for developing a tunable multifocal liquid crystal microlens array (TMLCMA), which can be operated in convex and concave modes through voltage control schemes. The TMLCMA is manufactured using nematic liquid crystals (LCs) with negative dielectric anisotropy, in conjunction with a triple-electrode structure consisting of top large-hole, middle small-hole array, and bottom planar electrodes. When a voltage is applied, the axially symmetric fringing electric field induced by the large-hole electrode causes the focal length of the microlens to gradually and radially change from the TMLCMA border toward the center. The gradient in the change of focal length is electrically tunable. The calculated spatial potential distributions qualitatively explain the multifocal characteristic and dual lens modes of the TMLCMA. The LC molecules in each microlens are reoriented in an axially symmetrical form, resulting in a polarization-insensitive TMLCMA. The imaging functions of the TMLCMA operated with dual lens modes are shown through practical demonstrations. The simple fabrication and versatile function make the developed TMLCMA highly promising for various optical system applications.

3.
Opt Lett ; 47(18): 4782-4785, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36107089

RESUMEN

A see-through display based on a planar holographic waveguide with a tunable focal plane is presented. A negative liquid crystal lens is attached on the outcoupling location of the waveguide to manipulate the image distance. The continuous tunable range for the focal length is from negative infinity to -65 cm. The demonstrated prototype system provides 10.5° field-of-view (FOV) for the images not locating at infinity. The FOV for the images not locating at infinity is limited by the diameter of the liquid crystal lens. The lens function of the liquid crystal lens is polarization dependent. By controlling the polarization states of the real scene and the input information image, the liquid crystal lens keeps the see-through function for a real scene and simultaneously plays the role of a negative lens for the input information image. Compared to the see-through display system with a single focal plane, the presented system offers a more comfortable augmented reality (AR) experience.

4.
Opt Express ; 30(6): 9521-9533, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35299378

RESUMEN

Liquid crystals (LCs) have been a vital component of modern communication and photonic technologies. However, traditional LC alignment on polyimide (PI) requires mechanically rubbing treatment to control LC orientation, suffering from dust particles, surface damage, and electrostatic charges. In this paper, LC alignment on organic single-crystal rubrene (SCR) has been studied and used to fabricate rubbing-free LC devices. A rubrene/toluene solution is spin-coated on the indium-tin-oxide (ITO) substrate and transformed thereafter to the orthorhombic SCR after annealing. Experimental result reveals that SCR-based LC cell has a homogeneous alignment geometry, the pretilt angle of LCs is low and the orientation of LCs is determined with capillary filling action of LCs. LC alignment on SCR performs a wider thermal tolerance than that on PI by virtue of the strong anchoring nature of LCs on SCR due to van der Waals and π-π electron stacking interactions between the rubrene and LCs. SCR-based LC cell performs a lower operation voltage, faster response time, and higher voltage holding ratio than the traditional PI-based LC cell. Organic SCR enables to play a role as weakly conductive alignment layer without rubbing treatment and offers versatile function to develop novel LC devices.

5.
Sci Rep ; 11(1): 17349, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34462538

RESUMEN

In this study, the response time of a 4 mm-aperture hole-patterned liquid crystal (HLC) lens has been significantly improved with doping of N-benzyl-2-methyl-4-nitroaniline (BNA) and rutile titanium dioxide nanoparticle (TiO2 NP) nanocomposite. The proposed HLC lens provides the focus and defocus times that are 8.5× and 14× faster than the pristine HLC lens, respectively. Meanwhile, the focus and defocus times of the proposed HLC lens reach the order of millisecond. Result shows that the synergistic effect of BNA and TiO2 NP induces a 78% decrement in the viscosity of pristine LC mixture that significantly shortens the focus and defocus times of HLC lens. The remarkable decrement in viscosity is mainly attributed to spontaneous polarization electric fields from the permanent dipole moments of the additives. Besides, the strengthened electric field surrounding TiO2 NP assists in decreasing the focus time of HLC lens. The focus and defocus times of HLC lens are related to the wavefront (or phase profile) bending speed. The time-dependent phase profiles of the HLC lenses with various viscosities are calculated. This result shows the decrease in wavefront bending time is not simply proportional to viscosity decrement. Furthermore, the proposed HLC lens emerges a larger tunable focus capability within smaller voltage interval than the pristine HLC lens.

6.
Opt Express ; 28(15): 22856-22866, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32752539

RESUMEN

A 4 mm-aperture hole-patterned liquid crystal (LC) lens has been fabricated using a LC mixture, which consisted of rutile titanium dioxide (TiO2) nanoparticles (NPs) and nematic LC E7, for the first time. The TiO2 NP dopant improves the addressing and operation voltages of the LC lens significantly because it strengthens the electric field surrounding the TiO2 NP and increases the capacitance of lens cell. Unlike the doping of common colloidal NPs, that of rutile TiO2 NPs increases the phase transition temperature and birefringence of the LC mixture, thereby helping enhance the lens power of LC lens. In comparison with a pure LC lens, the TiO2 NP-doped one has approximately 50% lower operation voltage because of the strengthened electric field around the NPs and has roughly 2.8 times faster response time because of the decreased rotational viscosity of the LC mixture and the increased interaction between the LC molecules by the NP dopants. Notably, the doping of rutile TiO2 NPs improves the operation voltage, tunable focusing capability, and response time of LC lens simultaneously. Meanwhile, this method does not degrade the focusing and lens qualities. The imaging performances of TiO2 NP-doped LC lens at various voltages are demonstrated practically by tunable focusing on three objectives at different positions. These results introduce NP in the application of LC lenses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...