Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Microbiol Resour Announc ; : e0019924, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682917

RESUMEN

Streptomycin thallous acetate actidione medium is typically used to isolate Brochothrix thermosphacta bacteria from food. Using this medium, three bacterial strains were isolated from the environment. Genomic sequences demonstrated that these bacteria are of the genera Lysinibacillus and Paenibacillus and are of biotechnological interest.

2.
Front Genet ; 15: 1355134, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606356

RESUMEN

Introduction: To consider the growing health issues caused by antibiotic resistance from a "one health" perspective, the contribution of meat production needs to be addressed. While antibiotic resistance is naturally present in microbial communities, the treatment of farm animals with antibiotics causes an increase in antibiotic resistance genes (ARG) in the gut microbiome. Pigs are among the most prevalent animals in agriculture; therefore, reducing the prevalence of antibiotic-resistant bacteria in the pig gut microbiome could reduce the spread of antibiotic resistance. Probiotics are often studied as a way to modulate the microbiome and are, therefore, an interesting way to potentially decrease antibiotic resistance. Methods: To assess the efficacy of a probiotic to reduce the prevalence of ARGs in the pig microbiome, six pigs received either treatment with antibiotics (tylvalosin), probiotics (Pediococcus acidilactici MA18/5M; Biopower® PA), or a combination of both. Their faeces and ileal digesta were collected and DNA was extracted for whole genome shotgun sequencing. The reads were compared with taxonomy and ARG databases to identify the taxa and resistance genes in the samples. Results: The results showed that the ARG profiles in the faeces of the antibiotic and combination treatments were similar, and both were different from the profiles of the probiotic treatment (p < 0.05). The effects of the treatments were different in the digesta and faeces. Many macrolide resistance genes were detected in a higher proportion in the microbiome of the pigs treated with antibiotics or the combination of probiotics and antibiotics. Resistance-carrying conjugative plasmids and horizontal transfer genes were also amplified in faeces samples for the antibiotic and combined treatments. There was no effect of treatment on the short chain fatty acid content in the digesta or the faeces. Conclusion: There is no positive effect of adding probiotics to an antibiotic treatment when these treatments are administered simultaneously.

3.
mSphere ; 9(3): e0080423, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38380913

RESUMEN

Due to the scarcity of transition metals within the human host, fungal pathogens have evolved sophisticated mechanisms to uptake and utilize these micronutrients at the infection interface. While considerable attention was turned to iron and copper acquisition mechanisms and their importance in fungal fitness, less was done regarding either the role of manganese (Mn) in infectious processes or the cellular mechanism by which fungal cells achieve their Mn-homeostasis. Here, we undertook transcriptional profiling in the pathogenic fungus Candida albicans experiencing both Mn starvation and excess to capture biological processes that are modulated by this metal. We uncovered that Mn scarcity influences diverse processes associated with fungal fitness including invasion of host cells and antifungal sensitivity. We show that Mn levels influence the abundance of iron and zinc emphasizing the complex crosstalk between metals. The deletion of SMF12, a member of Mn Nramp transporters, confirmed its contribution to Mn uptake. smf12 was unable to form hyphae and damage host cells and exhibited sensitivity to azoles. We found that the unfolded protein response (UPR), likely activated by decreased glycosylation under Mn limitation, was required to recover growth when cells were shifted from an Mn-starved to an Mn-repleted medium. RNA-seq profiling of cells exposed to Mn excess revealed that UPR was also activated. Furthermore, the UPR signaling axis Ire1-Hac1 was required to bypass Mn toxicity. Collectively, this study underscores the importance of Mn homeostasis in fungal virulence and comprehensively provides a portrait of biological functions that are modulated by Mn in a fungal pathogen. IMPORTANCE: Transition metals such as manganese provide considerable functionality across biological systems as they are used as cofactors for many catalytic enzymes. The availability of manganese is very limited inside the human body. Consequently, pathogenic microbes have evolved sophisticated mechanisms to uptake this micronutrient inside the human host to sustain their growth and cause infections. Here, we undertook a comprehensive approach to understand how manganese availability impacts the biology of the prevalent fungal pathogen, Candida albicans. We uncovered that manganese homeostasis in this pathogen modulates different biological processes that are essential for host infection which underscores the value of targeting fungal manganese homeostasis for potential antifungal therapeutics development.


Asunto(s)
Candida albicans , Manganeso , Humanos , Manganeso/metabolismo , Virulencia , Antifúngicos/farmacología , Homeostasis , Metales , Hierro
4.
mBio ; 14(5): e0180723, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37791798

RESUMEN

IMPORTANCE: Research often relies on well-studied orthologs within related species, with researchers using a well-studied gene or protein to allow prediction of the function of the ortholog. In the opportunistic pathogen Candida albicans, orthologs are usually compared with Saccharomyces cerevisiae, and this approach has been very fruitful. Many transcription factors (TFs) do similar jobs in the two species, but many do not, and typically changes in function are driven not by modifications in the structures of the TFs themselves but in the connections between the transcription factors and their regulated genes. This strategy of changing TF function has been termed transcription factor rewiring. In this study, we specifically looked for rewired transcription factors, or Candida-specific TFs, that might play a role in drug resistance. We investigated 30 transcription factors that were potentially rewired or were specific to the Candida clade. We found that the Adr1 transcription factor conferred resistance to drugs like fluconazole, amphotericin B, and terbinafine when activated. Adr1 is known for fatty acid and glycerol utilization in Saccharomyces, but our study reveals that it has been rewired and is connected to ergosterol biosynthesis in Candida albicans.


Asunto(s)
Candida albicans , Factores de Transcripción , Candida albicans/genética , Candida albicans/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Azoles/farmacología , Ergosterol , Fluconazol/farmacología , Candida/metabolismo , Saccharomyces cerevisiae/genética , Farmacorresistencia Fúngica/genética , Pruebas de Sensibilidad Microbiana
5.
Genes (Basel) ; 14(9)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37761871

RESUMEN

The Gram-positive bacterium Brochothrix thermosphacta is a spoilage agent commonly found on meat products. While the tet(L) gene, which confers resistance to tetracycline, has been identified in certain strains of B. thermosphacta, only a limited number of studies have investigated this gene and its potential presence on mobile DNA elements. This study aims to analyze the tetracycline-resistant strain B. thermosphacta BT469 at the genomic level to gain insight into the molecular determinants responsible for this resistance. Three plasmids have been identified in the strain: pBT469-1, which contains a tetR gene; pBT469-2, which harbours the tet(L) gene responsible for tetracycline resistance; and pBT469-3, which carries genes encoding for a thioredoxin and a phospholipase A2. Homology searches among sequences in public databases have revealed that the plasmid pBT469-2 is currently unique to the BT469 strain. However, the pBT469-1 plasmid is also found in three other strains of B. thermosphacta. Notably, sequences similar to pBT469-1 and pBT469-2 were also found in other bacterial genera, suggesting that these plasmids may be part of a diverse family present in several bacterial genera. Interestingly, sequences of various strains of B. thermosphacta show a high level of similarity with pBT469-3, suggesting that variants of this plasmid could be frequently found in this bacterium.

6.
Microbiol Resour Announc ; 12(10): e0062623, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37772837

RESUMEN

The bacterium Staphylococcus hyicus causes porcine exudative epidermitis in piglets, which represents both health and welfare concerns. Few genome sequences of this pathogen are published. We provide four additional ones to help future genomic analysis of S. hyicus. These are genomes of strains isolated from Canadian swine.

7.
Appl Environ Microbiol ; 89(4): e0130622, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37014232

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a foodborne pathogen producing Shiga toxins (Stx1 and Stx2), which can cause hemorrhagic diarrhea and life-threatening infections. O157:H7 strain EDL933 carries prophages CP-933V and BP-933W, which encode Shiga toxin genes (stx1 and stx2, respectively). The aim of this work was to investigate the mechanisms of adaptive resistance of EHEC strain EDL933 to a typically lethal dose of gamma irradiation (1.5 kGy). Adaptive selection through six passages of exposure to 1.5 kGy resulted in the loss of CP-933V and BP-933W prophages from the genome and mutations within three genes: wrbA, rpoA, and Wt_02639 (molY). Three selected EHEC clones that became irradiation adapted to the 1.5-kGy dose (C1, C2, and C3) demonstrated increased resistance to oxidative stress, sensitivity to acid pH, and decreased cytotoxicity to Vero cells. To confirm that loss of prophages plays a role in increased radioresistance, clones C1 and C2 were exposed to bacteriophage-containing lysates. Although phage BP-933W could lysogenize C1, C2, and E. coli K-12 strain MG1655, it was not found to have integrated into the bacterial chromosome in C1-Φ and C2-Φ lysogens. Interestingly, for the E. coli K-12 lysogen (K-12-Φ), BP-933W DNA had integrated at the wrbA gene (K-12-Φ). Both C1-Φ and C2-Φ lysogens regained sensitivity to oxidative stress, were more effectively killed by a 1.5-kGy gamma irradiation dose, and had regained cytotoxicity and acid resistance phenotypes. Further, the K-12-Φ lysogen became cytotoxic, more sensitive to gamma irradiation and oxidative stress, and slightly more acid resistant. IMPORTANCE Gamma irradiation of food products can provide an effective means of eliminating bacterial pathogens such as enterohemorrhagic Escherichia coli (EHEC) O157:H7, a significant foodborne pathogen that can cause severe disease due to the production of Stx. To decipher the mechanisms of adaptive resistance of the O157:H7 strain EDL933, we evolved clones of this bacterium resistant to a lethal dose of gamma irradiation by repeatedly exposing bacterial cells to irradiation following a growth restoration over six successive passages. Our findings provide evidence that adaptive selection involved modifications in the bacterial genome, including deletion of the CP-933V and BP-933W prophages. These mutations in EHEC O157:H7 resulted in loss of stx1 and stx2, loss of cytotoxicity to epithelial cells, and decreased resistance to acidity, critical virulence determinants of EHEC, concomitant with increased resistance to lethal irradiation and oxidative stress. These findings demonstrate that the potential adaptation of EHEC to high doses of radiation would involve elimination of the Stx-encoding phages and likely lead to a substantial attenuation of virulence.


Asunto(s)
Bacteriófagos , Escherichia coli Enterohemorrágica , Escherichia coli O157 , Proteínas de Escherichia coli , Animales , Chlorocebus aethiops , Toxina Shiga/genética , Profagos/genética , Células Vero , Toxinas Shiga/farmacología , Bacteriófagos/genética , Genómica , Proteínas Represoras/farmacología
8.
BMC Genomics ; 24(1): 93, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859182

RESUMEN

BACKGROUND: The quorum-sensing molecule farnesol, in opportunistic yeast Candida albicans, modulates its dimorphic switch between yeast and hyphal forms, and biofilm formation. Although there is an increasing interest in farnesol as a potential antifungal drug, the molecular mechanism by which C. albicans responds to this molecule is still not fully understood. RESULTS: A comparative genomic analysis between C. albicans strains that are naturally unresponsive to 30 µM of farnesol on TYE plates at 37 °C versus responsive strains uncovered new molecular determinants involved in the response to farnesol. While no signature gene was identified, amino acid changes in specific proteins were shown to correlate with the unresponsiveness to farnesol, particularly with substitutions in proteins known to be involved in the farnesol response. Although amino acid changes occur primarily in disordered regions of proteins, some amino acid changes were also found in known domains. Finally, the genomic investigation of intermediate-response strains showed that the non-response to farnesol occurs gradually following the successive accumulation of amino acid changes at specific positions. CONCLUSION: It is known that large genomic changes, such as recombinations and gene flow (losses and gains), can cause major phenotypic changes in pathogens. However, it is still not well known or documented how more subtle changes, such as amino acid substitutions, play a role in the adaptation of pathogens. The present study shows that amino acid changes can modulate C. albicans yeast's response to farnesol. This study also improves our understanding of the network of proteins involved in the response to farnesol, and of the involvement of amino acid substitutions in cellular behavior.


Asunto(s)
Candida albicans , Farnesol , Sustitución de Aminoácidos , Aminoácidos , Aclimatación
9.
Genome ; 66(5): 108-115, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36780641

RESUMEN

All the 36 known species to date of the genus Aeromonas are mesophilic except the species Aeromonas salmonicida, which includes both psychrophilic and mesophilic subspecies. For 20 years, more and more mesophilic A. salmonicida strains have been discovered. Only A. salmonicida subsp. pectinolytica has officially been classified as a mesophilic subspecies. Most mesophiles have been isolated in hot countries. We present, for the first time, the characterization of two new mesophilic isolates from Quebec (Canada). Phenotypic and genomic characterizations were carried out on these strains, isolated from dead fish from a fish farm. Isolates 19-K304 and 19-K308 are clearly mesophiles, virulent to the amoeba Dictyostelium discoideum, a surrogate host, and close to strain Y577, isolated in India. To our knowledge, this is the first time that mesophilic strains isolated from different countries are so similar. The major difference between the isolates is the presence of plasmid pY47-3, a cryptic plasmid that sometimes presents in mesophilic strains. More importantly, our extensive phylogenetic analysis reveals two well-defined clades of mesophilic strains with psychrophiles associated with one of these clades. This helps to have a better understanding of the evolution of this species and the apparition of psychrophilic subspecies.


Asunto(s)
Aeromonas salmonicida , Dictyostelium , Animales , Aeromonas salmonicida/genética , Filogenia , Canadá , Análisis por Conglomerados
10.
Antibiotics (Basel) ; 12(2)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36830168

RESUMEN

Plasmids that carry antibiotic resistance genes occur frequently in Aeromonas salmonicida subsp. salmonicida, an aquatic pathogen with severe consequences in salmonid farming. Here, we describe a 67 kb plasmid found in the A. salmonicida subsp. salmonicida Strain SHY15-2939 from Quebec, Canada. This new plasmid, named pAsa-2939 and identified by high throughput sequencing, displays features never found before in this bacterial species. It contains a transposon related to the Tn21 family, but with an unusual organization. This transposon bears a catB3 gene (chloramphenicol resistance) that has not been detected yet in A. salmonicida subsp. salmonicida. The plasmid is transferable by conjugation into Aeromonas hydrophila, but not into Escherichia coli. Based on PCR analysis and genomic sequencing (Illumina and PacBio), we determined that the transposon is unstable in A. salmonicida subsp. salmonicida Strain SHY15-2939, but it is stable in A. hydrophila trans-conjugants, which explains the chloramphenicol resistance variability observed in SHY15-2939. These results suggest that this bacterium is likely not the most appropriate host for this plasmid. The presence of pAsa-2939 in A. salmonicida subsp. salmonicida also strengthens the reservoir role of this bacterium for antibiotic resistance genes, even those that resist antibiotics not used in aquaculture in Québec, such as chloramphenicol.

11.
Arch Virol ; 168(2): 72, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670249

RESUMEN

Aeromonas salmonicida subsp. salmonicida causes furunculosis, a major infection that affects fish farms worldwide. We isolated phage vB_AsaM_LPM4 (LPM4) from a diseased fish. Based on its DNA sequence, LPM4 is identical to the uncharacterized Prophage 3, a prophage present mostly in North American A. salmonicida subsp. salmonicida isolates that bear the genomic island AsaGEI2a. Prophage 3 and AsaGEI2a are inserted side by side in the bacterial chromosome. The LPM4/Prophage 3 sequence is similar to that of other prophages found in various members of the genus Aeromonas. LPM4 specifically infects A. salmonicida subsp. salmonicida strains that do not already bear Prophage 3. The presence of an A-layer on the surface of the bacteria is not necessary for the adsorption of phage LPM4 but seems to facilitate its infection process. We also successfully produced lysogenic strains that bear Prophage 3 using sensitive strains with different genetic backgrounds, suggesting that there is no interdependency between LPM4 and AsaGEIs. PCR analysis of the excision dynamics of Prophage 3 and AsaGEIs revealed that these genetic elements can spontaneously excise themselves from the bacterial chromosome independently of one another. Through the isolation and characterization of LPM4, this study reveals new facets of Prophage 3 and AsaGEIs.


Asunto(s)
Aeromonas salmonicida , Aeromonas , Enfermedades de los Peces , Forunculosis , Animales , Profagos/genética , Aeromonas salmonicida/genética , Forunculosis/microbiología , Peces , Enfermedades de los Peces/microbiología
12.
Antibiotics (Basel) ; 12(1)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36671375

RESUMEN

Antibiotic resistance is an issue in many areas of human activity. The mobilization of antibiotic resistance genes within the bacterial community makes it difficult to study and control the phenomenon. It is known that certain insertion sequences, which are mobile genetic elements, can participate in the mobilization of antibiotic resistance genes and in the expression of these genes. However, the magnitude of the contribution of insertion sequences to the mobility of antibiotic resistance genes remains understudied. In this study, the relationships between insertion sequences and antibiotic resistance genes present in the microbiome were investigated using two public datasets. The first made it possible to analyze the effects of different antibiotics in a controlled mouse model. The second dataset came from a study of the differences between conventional and organic-raised cattle. Although it was possible to find statistically significant correlations between the insertion sequences and antibiotic resistance genes in both datasets, several challenges remain to better understand the contribution of insertion sequences to the motility of antibiotic resistance genes. Obtaining more complete and less fragmented metagenomes with long-read sequencing technologies could make it possible to understand the mechanisms favoring horizontal transfers within the microbiome with greater precision.

13.
Life Sci Alliance ; 6(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36622346

RESUMEN

Leptospira bacteria comprise numerous species, several of which cause serious disease to a broad range of hosts including humans. These spirochetes exhibit large intraspecific variation, resulting in complex tabulations of serogroups/serovars that crisscross the species classification. Serovar identity, linked to biological/clinical phenotypes, depends on the structure of surface-exposed LPS. Many LPS biosynthesis-encoding genes reside within the chromosomic rfb gene cluster. However, the genetic basis of intraspecies variability is not fully understood, constraining diagnostics/typing methods to cumbersome serologic procedures. We now show that the gene content of the rfb cluster strongly correlates with Leptospira serovar designation. Whole-genome sequencing of pathogenic L. noguchii, including strains of different serogroups, reveals that the rfb cluster undergoes extensive horizontal gene transfer. The rfb clusters from several Leptospira species disclose a univocal correspondence between gene composition and serovar identity. This work paves the way to genetic typing of Leptospira serovars, and to pinpointing specific genes within the distinct rfb clusters, encoding host-specific virulence traits. Further research shall unveil the molecular mechanism of rfb transfer among Leptospira strains and species.


Asunto(s)
Leptospira , Humanos , Leptospira/genética , Serogrupo , Lipopolisacáridos , Fenotipo
15.
J Bacteriol ; 204(10): e0018522, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36102640

RESUMEN

A subpopulation of small-colony variants (SCVs) is a frequently observed feature of Pseudomonas aeruginosa isolates obtained from colonized cystic fibrosis lungs. Since most SCVs have until now been isolated from clinical samples, it remains unclear how widespread the ability of P. aeruginosa strains to develop this phenotype is and what the genetic mechanism(s) behind the emergence of SCVs are according to the origin of the isolate. In the present work, we investigated the ability of 22 P. aeruginosa isolates from various environmental origins to spontaneously adopt an SCV-like smaller alternative morphotype distinguishable from that of the ancestral parent strain under laboratory culture conditions. We found that all the P. aeruginosa strains tested could adopt an SCV phenotype, regardless of their origin. Whole-genome sequencing of SCVs obtained from clinical and environmental sources revealed single mutations exclusively in two distinct c-di-GMP signaling pathways, the Wsp and YfiBNR pathways. We conclude that the ability to switch to an SCV phenotype is a conserved feature of P. aeruginosa and results from the acquisition of a stable genetic mutation, regardless of the origin of the strain. IMPORTANCE P. aeruginosa is an opportunistic pathogen that thrives in many environments. It poses a significant health concern, notably because this bacterium is the most prevalent pathogen found in the lungs of people with cystic fibrosis. In infected hosts, its persistence is considered related to the emergence of an alternative small-colony-variant (SCV) phenotype. By reporting the distribution of P. aeruginosa SCVs in various nonclinical environments and the involvement of c-di-GMP in SCV emergence from both clinical and environmental strains, this work contributes to understanding a conserved adaptation mechanism used by P. aeruginosa to adapt readily in all environments. Hindering this adaptation strategy could help control persistent infection by P. aeruginosa.


Asunto(s)
GMP Cíclico , Pseudomonas aeruginosa , Humanos , Fibrosis Quística/microbiología , Mutación , Fenotipo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Infecciones por Pseudomonas/microbiología , GMP Cíclico/análogos & derivados , GMP Cíclico/genética
16.
Front Microbiol ; 13: 932165, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090081

RESUMEN

Vibrio cholerae includes strains responsible for the cholera disease and is a natural inhabitant of aquatic environments. V. cholerae possesses a unique polar flagellum essential for motility, adhesion, and biofilm formation. In a previous study, we showed that motility and biofilm formation are altered in the presence of subinhibitory concentrations of polymyxin B in V. cholerae O1 and O139. In this study, we performed an experimental evolution to identify the genes restoring the motility in the presence of a subinhibitory concentration of polymyxin B. Mutations in five genes have been identified in three variants derived from two different parental strains A1552 and MO10: ihfA that encodes a subunit of the integration host factor (IHF), vacJ (mlaA) and mlaF, two genes belonging to the maintenance of the lipid asymmetry (Mla) pathway, dacB that encodes a penicillin-binding protein (PBP4) and involved in cell wall synthesis, and ccmH that encodes a c-type cytochrome maturation protein. We further demonstrated that the variants derived from MO10 containing mutations in vacJ, mlaF, and dacB secrete more and larger membrane vesicles that titer the polymyxin B, which increases the bacterial survival and is expected to limit its impact on the bacterial envelope and participate in the flagellum's retention and motility.

17.
Antibiotics (Basel) ; 11(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36009916

RESUMEN

Aeromonas salmonicida subsp. salmonicida is a pathogenic bacterium responsible for furunculosis in salmonids. Following an outbreak of furunculosis, the infection can be treated with antibiotics, but it is common to observe ineffective treatment due to antibiotic resistance. This bacterium has a wide variety of plasmids responsible for this resistance. Among them, pRAS3 carries a tetracycline resistance gene. Several variants of this plasmid have been discovered over the years (pRAS3-3432 and pRAS3.1 to 3.4). During the present study, two new variants of the plasmid pRAS3 were identified (pRAS3.5 and pRAS3-3759) in strains of A. salmonicida subsp. salmonicida. Plasmid pRAS3-3759, which has been found in many strains from the same region over the past three years, has an additional genetic element identical to one found in pRAS3-3432. This genetic element was also found in Chlamydia suis, a swine pathogen. In this study, we analyzed the bacteria's resistance to tetracycline, the number of copies of the plasmids, and the growth of the strains that carry five of the pRAS3 variants (pRAS3.3 to 3.5, pRAS3-3432, and pRAS3-3759). The results show no particular trend despite the differences between the plasmids, except for the resistance to tetracycline when analyzed in an isogenic background. Blast analysis also revealed the presence of pRAS3 plasmids in other bacterial species, which suggests that this plasmid family has widely spread. This study once again highlights the ability of A. salmonicida subsp. salmonicida to adapt to furunculosis antibiotic treatments, and the still-growing family of pRAS3 plasmids.

18.
MethodsX ; 9: 101716, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35601955

RESUMEN

Studies on the microbiome of different species are on the rise, due to a growing interest in animal health and the safety of food products of animal origin. A challenge with studying animals' microbiomes is to find methods that obtain a good representation of the microbial community of interest. Good unbiased sampling protocols are the basis for a solid experimental design, but may need to be done in environments where sample preservation could be difficult. In this study, we evaluate by shotgun sequencing the impact of stabilizing swine faeces samples using a commercial stabilizer (PERFORMAbiome • GUT | PB-200, DNA Genotek). Using stabilizer makes it possible to obtain DNA that is significantly less degraded than when the samples are not stabilized. Also, the results on the taxonomy and on the bacterial functions encoded in the microbiome are impacted by whether or not the samples are stabilized. Finally, the stabilization of samples that had already been frozen and stored at -80°C led to extraction and DNA quality results similar to those obtained from samples that were stabilized before freezing.

19.
Microorganisms ; 10(2)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35208695

RESUMEN

The bacterium Aeromonas salmonicida has long been known to be one of the most feared pathogens in fish farming. However, the more we discover about this bacterial species, the more we question whether it is really exclusively an aquatic pathogen. In recent years, it has become obvious that this bacterial species includes a myriad of strains with various lifestyle and ecological niches, including the well-known strict psychrophiles, the first bacteria known of the species, and the newly described mesophilic strains. The mesophiles are able to grow at low temperatures, but even better at temperatures of approximately 37 °C, which strict psychrophiles cannot do. In this perspective article, we address some aspects surrounding this dual lifestyle in A. salmonicida, including the impact of mobile genetic elements, and how future research around this bacterial species may focus on the psychrophilic/mesophilic dichotomy, which makes A. salmonicida an increasingly interesting and relevant model for the study of speciation.

20.
Environ Microbiol ; 24(3): 1062-1075, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34488244

RESUMEN

The saprophyte Pseudomonas aeruginosa is a versatile opportunistic pathogen causing infections in immunocompromised individuals. To facilitate its adaptation to a large variety of niches, this bacterium exploits population density-dependent gene regulation systems called quorum sensing (QS). In P. aeruginosa, three distinct but interrelated QS systems (las, rhl and pqs) regulate the production of many survival and virulence functions. In prototypical strains, the las system, through its transcriptional regulator LasR, is important for the full activation of the rhl and pqs systems. Still, LasR-deficient isolates have been reported, mostly sampled from the lungs of people with cystic fibrosis, where they are considered selected by the chronic infection environment. In this study, we show that a defect in LasR activity appears to be an actually widespread mechanism of adaptation in this bacterium. Indeed, we found abundant LasR-defective isolates sampled from hydrocarbon-contaminated soils, hospital sink drains and meat/fish market environments, using an approach based on phenotypic profiling, supported by gene sequencing. Interestingly, several LasR-defective isolates maintain an active rhl system or are deficient in pqs system signalling. The high prevalence of a LasR-defective phenotype among environmental P. aeruginosa isolates questions the role of QS in niche adaptation.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/fisiología , Percepción de Quorum/genética , Transactivadores/genética , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...