Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(11): 5167-5179, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38380977

RESUMEN

Cancer is a perilous life-threatening disease, and attempts are constantly being made to create multinuclear transition metal complexes that could lead to the development of potential anticancer medications and administration procedures. Hence, this work aims to design, synthesize, characterize, and assess the anticancer efficacy of ruthenium p-cymene complexes incorporating N,N'-bis(4-substituted benzoyl)hydrazine ligands. The formation of the new complexes (Ru2H1-Ru2H3) has been thoroughly established by elemental analysis, and FT-IR, UV-vis, NMR, and HR-MS spectral techniques. The solid-state molecular structures of the complexes Ru2H1 and Ru2H3 have been determined using the SC-XRD study, which confirms the N, O, and Cl-legged piano stool pseudo-octahedral geometry of each ruthenium(II) ion. The stability of these complexes in the solution state and their lipophilicity profile have been determined. Furthermore, the title complexes were tested for their in vitro anticancer activity against cancerous H460 (lung cancer cells), SkBr3 (breast cancer cells), HepG2 (liver cancer cells), and HeLa (cervical cancer cells) along with non-cancerous (HEK-293) cells. The IC50 results revealed that complex Ru2H3 exhibits potent activity against the proliferation of all four cancer cells and outscored the effect of the standard metallodrug cisplatin. This may be attributed to the presence of a couple of lipophilic electron-donating methoxy groups in the ligand scaffold and also the ruthenium(II) p-cymene motifs. Advantageously, all the complexes (Ru2H1-Ru2H3) displayed cytotoxic specificity only towards cancerous cells by leaving the off-target non-cancerous cells undamaged. Acridine orange/ethidium bromide (AO/EB) staining, Hoechst 33342, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) staining assays were used to investigate the apoptotic pathway and ROS levels in mitochondria. The results of western blot analysis confirmed that the complexes triggered apoptosis through an intrinsic mitochondrial pathway by upregulating Bax and downregulating Bcl-2 proteins. Finally, the extent of apoptosis triggered by the complex Ru2H3 was quantified with the aid of flow cytometry using the Annexin V-FITC/propidium iodide (PI) double-staining technique.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Cimenos , Rutenio , Humanos , Rutenio/farmacología , Rutenio/química , Especies Reactivas de Oxígeno/metabolismo , Células HEK293 , Espectroscopía Infrarroja por Transformada de Fourier , Apoptosis , Complejos de Coordinación/farmacología , Complejos de Coordinación/metabolismo , Antineoplásicos/química , Hidrazinas/farmacología , Línea Celular Tumoral
2.
Dalton Trans ; 52(44): 16376-16387, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37870147

RESUMEN

Breast cancer is the most dangerous type in women and its fatality rate has increased over the past decade. To develop more potent and target-specific breast cancer drugs, six arene ruthenium(II) complexes (1-6) containing naphthoyl benzhydrazine ligands (NL1-NL3) were synthesized and characterized by analytical and spectroscopic (infrared, UV-visible, NMR and HR-MS) methods. The SC-XRD analysis of 1 and 6 demonstrates the bis N^O bidentate binding nature of ligands to ruthenium ions and a pseudo-octahedral geometry around the Ru(II) ion. Solution stability studies using UV-Vis spectroscopy evidenced the instantaneous hydrolysis of the complexes to form monoaquated species in a solution of 1 : 9 (v/v) DMSO/phosphate buffer. All the complexes were screened for their in vitro antiproliferative activities against different human breast cancer cells, including MCF-7, SkBr3, MDA-MB-468, MDA-MB-231, and non-cancerous HEK-293 cells, by an MTT assay, and they displayed good cancer cell growth inhibitory capacity with low IC50 values. Notably, complexes 2 and 5 comprising methoxy and p-cymene groups exhibited excellent cytotoxicity towards SkBr3 cells compared to clinical drug cisplatin. AO-EB and HOECHST-33342 staining assays revealed apoptotic morphological changes in complex-treated cancer cells. Further, reactive oxygen species and mitochondrial membrane potential assays validated that the complexes induce apoptotic cell death via an intrinsic mitochondrial pathway with ROS production. In addition, the apoptotic induction and the quantification of late apoptosis were established with the aid of western blot and flow cytometry analysis, respectively.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Complejos de Coordinación , Rutenio , Humanos , Femenino , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Rutenio/farmacología , Rutenio/química , Células HEK293 , Complejos de Coordinación/farmacología , Complejos de Coordinación/metabolismo , Antineoplásicos/química
3.
ACS Omega ; 8(37): 33229-33241, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37744785

RESUMEN

Herein, the impact of surface charge tailored of gold nanorods (GNRs) on breast cancer cells (MCF-7 and MDA-MB-231) upon conjugation with triphenylphosphonium (TPP) for improved photodynamic therapy (PDT) targeting mitochondria was studied. The salient features of the study are as follows: (i) positive (CTAB@GNRs) and negative (PSS-CTAB@GNRs) surface-charged gold nanorods were developed and characterized; (ii) the mitochondrial targeting efficiency of gold nanorods was improved by conjugating TPP molecules; (iii) the conjugated nanoprobes (TPP-CTAB@GNRs and TPP-PSS-CTAB@GNRs) were evaluated for PDT in the presence of photosensitizer (PS), 5-aminolevulinic acid (5-ALA) in breast cancer cells; (iv) both nanoprobes (TPP-CTAB@GNRs and TPP-PSS-CTAB@GNRs) induce apoptosis, damage DNA, generate reactive oxygen species, and decrease mitochondrial membrane potential upon 5-ALA-based PDT; and (v) 5-ALA-PDT of two nanoprobes (TPP-CTAB@GNRs and TPP-PSS-CTAB@GNRs) impact cell signaling (PI3K/AKT) pathway by upregulating proapoptotic genes and proteins. Based on the results, we confirm that the positively charged (rapid) nanoprobes are more advantageous than their negatively (slow) charged nanoprobes. However, depending on the kind and degree of cancer, both nanoprobes can serve as efficient agents for delivering anticancer therapy.

4.
Sci Rep ; 13(1): 2230, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36754981

RESUMEN

Although gold nanoparticles based photodynamic therapy (PDT) were reported to improve efficacy and specificity, the impact of surface charge in targeting cancer is still a challenge. Herein, we report gold nanotriangles (AuNTs) tuned with anionic and cationic surface charge conjugating triphenylphosphonium (TPP) targeting breast cancer cells with 5-aminoleuvinic acid (5-ALA) based PDT, in vitro. Optimized surface charge of AuNTs with and without TPP kill breast cancer cells. By combining, 5-ALA and PDT, the surface charge augmented AuNTs deliver improved cellular toxicity as revealed by MTT, fluorescent probes and flow cytometry. Further, the 5-ALA and PDT treatment in the presence of AuNTs impairs cell survival Pi3K/AKT signaling pathway causing mitochondrial dependent apoptosis. The cumulative findings demonstrate that, cationic AuNTs with TPP excel selective targeting of breast cancer cells in the presence of 5-ALA and PDT.


Asunto(s)
Neoplasias de la Mama , Nanopartículas del Metal , Fotoquimioterapia , Humanos , Femenino , Proteínas Proto-Oncogénicas c-akt , Oro/farmacología , Fosfatidilinositol 3-Quinasas , Neoplasias de la Mama/tratamiento farmacológico , Nanopartículas del Metal/uso terapéutico , Ácido Aminolevulínico/farmacología , Apoptosis , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA