Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arthroplast Today ; 22: 101170, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37521740

RESUMEN

Background: Image artifacts caused by metal knee implants in 1.5T and 3T magnetic resonance imaging (MRI) systems complicate imaging-based diagnosis of the peri-implant region after total knee arthroplasty. Alternatively, metal-free knee prostheses could effectively minimize MRI safety hazards and offer the potential for higher quality diagnostic images. Methods: A novel knee arthroplasty device composed of BIOLOX delta, an alumina matrix composite (AMC) ceramic, was tested in a magnetic resonance (MR) environment. American Society for Testing and Materials test methods were used for evaluating magnetically induced displacement force, magnetically induced torque, radiofrequency-induced heating, and MR image artifact. Results: Magnetically induced displacement force and magnetically induced torque results of the AMC ceramic knee indicated that these effects do not pose a known risk in a clinical MR environment, as assessed in a 3T magnetic field. Moreover, minimal radiofrequency-induced heating of the device was observed. In addition, the AMC ceramic knee demonstrated minimal MR image artifacts (7 mm) in comparison to a cobalt-chromium knee (88 mm). The extremely low magnetic susceptibility of AMC (2 ppm) underlines that it is a nonmetallic and nonmagnetic material well suited for the manufacturing of MR Safe orthopaedic implants. Conclusions: The AMC ceramic knee is a novel metal-free total knee arthroplasty device that can be regarded as MR Safe, as suggested by the absence of hazards from the exposure of this implant to a MR environment. The AMC ceramic knee presents the advantage of being scanned with superior imaging results in 3T MRI systems compared to alternative metal implants on the market.

3.
J Trauma Acute Care Surg ; 91(2): 302-309, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34039932

RESUMEN

BACKGROUND: Noncompressible hemorrhage is a leading cause of preventable death in civilian and military trauma populations. Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a promising method for controlling noncompressible hemorrhage, but safe balloon inflation parameters are not well defined. Our goal was to determine the balloon inflation parameters associated with benchtop flow occlusion and aortic/balloon rupture in ex vivo human aortas and test the hypothesis that optimal balloon inflation characteristics depend on systolic pressure and subject demographics. METHODS: Aortic occlusion parameters in human thoracic aortas (TAs) and abdominal aortas (AAs) from 79 tissue donors (median ± SD age, 52 ± 18 years [range, 13-75 years]; male, 52; female, 27) were recorded under 100/40, 150/40, and 200/40 mm Hg flow pressures for ER-REBOA and Coda balloons. Rupture tests were done with Coda balloons only without flow. RESULTS: In the TA, the average balloon inflation volumes and pressures resulting in 100/40 mm Hg flow occlusion were 11.7 ± 3.8 mL and 174 ± 65 mm Hg for the ER-REBOA, and 10.6 ± 4.3 mL and 94 ± 57 mm Hg for the Coda balloons. In the AA, these values were 6.2 ± 2.6 mL and 110 ± 47 mm Hg for the ER-REBOA, and 5.9 ± 2.2 mL and 71 ± 30 mm Hg for the Coda. The average balloon inflation parameters associated with aortic/Coda balloon rupture were 39.1 ± 6.5 mL and 1,284 ± 385 mm Hg in the TA, and 27.7 ± 7.7 mL and 1,410 ± 483 mm Hg in the AA. Age, sex, and systolic pressure all had significant effects on balloon occlusion and rupture parameters. CONCLUSION: Optimal balloon inflation parameters depend on anatomical, physiological, and demographic characteristics. Pressure-guided rather than volume-guided balloon inflation may reduce the risk of aortic rupture. These results can be used to help improve the safety of REBOA procedures and devices.


Asunto(s)
Oclusión con Balón , Procedimientos Endovasculares , Hemorragia/prevención & control , Resucitación/métodos , Adolescente , Adulto , Anciano , Aorta Abdominal , Aorta Torácica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
4.
Acta Biomater ; 119: 268-283, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33127484

RESUMEN

Elastic and muscular arteries differ in structure, function, and mechanical properties, and may adapt differently to aging. We compared the descending thoracic aortas (TA) and the superficial femoral arteries (SFA) of 27 tissue donors (average 41±18 years, range 13-73 years) using planar biaxial testing, constitutive modeling, and bidirectional histology. Both TAs and SFAs increased in size with age, with the outer radius increasing more than the inner radius, but the TAs thickened 6-fold and widened 3-fold faster than the SFAs. The circumferential opening angle did not change in the TA, but increased 2.4-fold in the SFA. Young TAs were relatively isotropic, but the anisotropy increased with age due to longitudinal stiffening. SFAs were 51% more compliant longitudinally irrespective of age. Older TAs and SFAs were stiffer, but the SFA stiffened 5.6-fold faster circumferentially than the TA. Physiologic stresses decreased with age in both arteries, with greater changes occurring longitudinally. TAs had larger circumferential, but smaller longitudinal stresses than the SFAs, larger cardiac cycle stretch, 36% lower circumferential stiffness, and 8-fold more elastic energy available for pulsation. TAs contained elastin sheets separated by smooth muscle cells (SMCs), collagen, and glycosaminoglycans, while the SFAs had SMCs, collagen, and longitudinal elastic fibers. With age, densities of elastin and SMCs decreased, collagen remained constant due to medial thickening, and the glycosaminoglycans increased. Elastic and muscular arteries demonstrate different morphological, mechanical, physiologic, and structural characteristics and adapt differently to aging. While the aortas remodel to preserve the Windkessel function, the SFAs maintain higher longitudinal compliance.


Asunto(s)
Aorta Torácica , Arteria Femoral , Adolescente , Adulto , Anciano , Envejecimiento , Fenómenos Biomecánicos , Adaptabilidad , Elastina , Humanos , Persona de Mediana Edad , Estrés Mecánico , Adulto Joven
5.
Acta Biomater ; 121: 431-443, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33227490

RESUMEN

Peripheral arterial disease differentially affects the superficial femoral (SFA) and the popliteal (PA) arteries, but their morphometric, structural, mechanical, and physiologic differences are poorly understood. SFAs and PAs from 125 human subjects (age 13-92, average 52±17 years) were compared in terms of radii, wall thickness, and opening angles. Structure and vascular disease were quantified using histology, mechanical properties were determined with planar biaxial extension, and constitutive modeling was used to calculate the physiologic stress-stretch state, elastic energy, and the circumferential physiologic stiffness. SFAs had larger radii than PAs, and both segments widened with age. Young SFAs were 5% thicker, but in old subjects the PAs were thicker. Circumferential (SFA: 96→193°, PA: 105→139°) and longitudinal (SFA: 139→306°, PA: 133→320°) opening angles increased with age in both segments. PAs were more diseased than SFAs and had 11% thicker intima. With age, intimal thickness increased 8.5-fold, but medial thickness remained unchanged (620µm) in both arteries. SFAs had 30% more elastin than the PAs, and its density decreased ~50% with age. SFAs were more compliant than PAs circumferentially, but there was no difference longitudinally. Physiologic circumferential stress and stiffness were 21% and 11% higher in the SFA than in the PA across all ages. The stored elastic energy decreased with age (SFA: 1.4→0.4kPa, PA: 2.5→0.3kPa). While the SFA and PA demonstrate appreciable differences, most of them are due to vascular disease. When pathology is the same, so are the mechanical properties, but not the physiologic characteristics that remain distinct due to geometrical differences.


Asunto(s)
Enfermedad Arterial Periférica , Arteria Poplítea , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Elastina , Arteria Femoral , Fémur , Humanos , Persona de Mediana Edad , Estrés Mecánico , Adulto Joven
6.
Acta Biomater ; 103: 172-188, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31877371

RESUMEN

Aortic mechanical and structural characteristics have profound effects on pathophysiology, but many aspects of physiologic stress-stretch state and intramural changes due to aging remain poorly understood in human tissues. While difficult to assess in vivo due to residual stresses and pre-stretch, physiologic stress-stretch characteristics can be calculated using experimentally-measured mechanical properties and constitutive modeling. Mechanical properties of 76 human descending thoracic aortas (TA) from 13 to 78-year-old donors (mean age 51±18 years) were measured using multi-ratio planar biaxial extension. Constitutive parameters were derived for aortas in 7 age groups, and the physiologic stress-stretch state was calculated. Intramural characteristics were quantified from histological images and related to aortic morphometry and mechanics. TA stiffness increased with age, and aortas became more nonlinear and anisotropic. Systolic and diastolic elastic energy available for pulsation decreased with age from 30 to 8 kPa and from 18 to 5 kPa, respectively. Cardiac cycle circumferential stretch dropped from 1.14 to 1.04, and circumferential and longitudinal physiologic stresses decreased with age from 90 to 72 kPa and from 90 to 17 kPa, respectively. Aortic wall thickness and radii increased with age, while the density of elastin in the tunica media decreased. The number of elastic lamellae and circumferential physiologic stress per lamellae unit remained constant with age at 102±10 and 0.85±0.04 kPa, respectively. Characterization of mechanical, physiological, and structural features in human aortas of different ages can help understand aortic pathology, inform the development of animal models that simulate human aging, and assist with designing devices for open and endovascular aortic repairs. STATEMENT OF SIGNIFICANCE: This manuscript describes mechanical and structural changes occurring in human thoracic aortas with age, and presents material parameters for 4 commonly used constitutive models. Presented data can help better understand aortic pathology, inform the development of animal models that simulate human aging, and assist with designing devices for open and endovascular aortic repairs.


Asunto(s)
Envejecimiento/fisiología , Aorta Torácica/anatomía & histología , Aorta Torácica/fisiología , Adolescente , Adulto , Anciano , Fenómenos Biomecánicos , Elasticidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Estrés Mecánico , Adulto Joven
7.
Acta Biomater ; 90: 225-240, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30928732

RESUMEN

Endovascular treatment of Peripheral Arterial Disease (PAD) is notorious for high failure rates, and interaction between the arterial wall and the repair devices plays a significant role. Computational modeling can help improve clinical outcomes of these interventions, but it requires accurate inputs of elastic and damage characteristics of the femoropopliteal artery (FPA) which are currently not available. Fresh human FPAs from n = 104 tissue donors 14-80 years old were tested using planar biaxial extension to capture elastic and damage characteristics. Damage initiation stretches and stresses were determined for both longitudinal and circumferential directions, and their correlations with age and risk factors were assessed. Two and four-fiber-family invariant-based constitutive models augmented with damage functions were used to describe stress softening with accumulating damage. In FPAs younger than 50 years, damage began accumulating after 1.51 ±â€¯0.13 and 1.49 ±â€¯0.11 stretch, or 196 ±â€¯110 kPa and 239 ±â€¯79 kPa Cauchy stress in the longitudinal and circumferential directions, respectively. In FPAs older than 50 years, damage initiation stretches and stresses decreased to 1.27 ±â€¯0.09 (106 ±â€¯52 kPa) and 1.26 ±â€¯0.09 (104 ±â€¯59 kPa), respectively. Damage manifested primarily as tears at the internal and external elastic laminae and within the tunica media layer. Higher body mass index and presence of diabetes were associated with lower damage initiation stretches and higher stresses. The selected constitutive models were able to accurately portray the FPA behavior in both elastic and inelastic domains, and properties were derived for six age groups. Presented data can help improve fidelity of computational models simulating endovascular PAD repairs that involve arterial damage. STATEMENT OF SIGNIFICANCE: This manuscript describes inelastic, i.e. damage, behavior of human femoropopliteal arteries, and provides values for three constitutive models simulating this behavior computationally. Using a set of 104 human FPAs 14-80 years old, we have investigated stress and stretch levels corresponding to damage initiation, and have studied how these damage characteristics change across different age groups. Presented inelastic arterial characteristics are important for computational simulations modeling balloon angioplasty and stenting of peripheral arterial disease lesions.


Asunto(s)
Simulación por Computador , Arteria Femoral , Modelos Cardiovasculares , Enfermedad Arterial Periférica , Arteria Poplítea , Túnica Media , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Arteria Femoral/patología , Arteria Femoral/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Arterial Periférica/patología , Enfermedad Arterial Periférica/fisiopatología , Arteria Poplítea/patología , Arteria Poplítea/fisiopatología , Túnica Media/patología , Túnica Media/fisiopatología
8.
Ann Biomed Eng ; 46(5): 684-704, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29470746

RESUMEN

Endovascular stenting has matured into a commonly used treatment for peripheral arterial disease (PAD) due to its minimally invasive nature and associated reductions in short-term morbidity and mortality. The mechanical properties of the superelastic Nitinol alloy have played a major role in the explosion of peripheral artery stenting, with modern stents demonstrating reasonable resilience and durability. Yet in the superficial femoral and popliteal arteries, even the newest generation Nitinol stents continue to demonstrate clinical outcomes that leave significant room for improvement. Restenosis and progression of native arterial disease often lead to recurrence of symptoms and reinterventions that increase morbidity and health care expenditures. One of the main factors thought to be associated with stent failure in the femoropopliteal artery (FPA) is the unique and highly dynamic mechanical environment of the lower limb. Clinical and experimental data demonstrate that the FPA undergoes significant deformations with limb flexion. It is hypothesized that the inability of many existing stent designs to conform to these deformations likely plays a role in reconstruction failure, as repetitive movements of the leg and thigh combine with mechanical mismatch between the artery and the stent and result in mechanical damage to both the artery and the stent. In this review we will identify challenges and provide a mechanical perspective of FPA stenting, and then discuss current research directions with promise to provide a better understanding of Nitinol, specific features of stent design, and improved characterization of the biomechanical environment of the FPA to facilitate development of better stents for patients with PAD.


Asunto(s)
Aleaciones , Prótesis Vascular , Arteria Femoral , Enfermedad Arterial Periférica/cirugía , Arteria Poplítea , Diseño de Prótesis/métodos , Stents , Animales , Humanos , Enfermedad Arterial Periférica/patología
9.
Biomech Model Mechanobiol ; 16(2): 681-692, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27771811

RESUMEN

Femoropopliteal artery (FPA) mechanics play a paramount role in pathophysiology and the artery's response to therapeutic interventions, but data on FPA mechanical properties are scarce. Our goal was to characterize human FPAs over a wide population to derive a constitutive description of FPA aging to be used for computational modeling. Fresh human FPA specimens ([Formula: see text]) were obtained from [Formula: see text] predominantly male (80 %) donors 54±15 years old (range 13-82 years). Morphometric characteristics including radius, wall thickness, opening angle, and longitudinal pre-stretch were recorded. Arteries were subjected to multi-ratio planar biaxial extension to determine constitutive parameters for an invariant-based model accounting for the passive contributions of ground substance, elastin, collagen, and smooth muscle. Nonparametric bootstrapping was used to determine unique sets of material parameters that were used to derive age-group-specific characteristics. Physiologic stress-stretch state was calculated to capture changes with aging. Morphometric and constitutive parameters were derived for seven age groups. Vessel radius, wall thickness, and circumferential opening angle increased with aging, while longitudinal pre-stretch decreased ([Formula: see text]). Age-group-specific constitutive parameters portrayed orthotropic FPA stiffening, especially in the longitudinal direction. Structural changes in artery wall elastin were associated with reduction of physiologic longitudinal and circumferential stretches and stresses with age. These data and the constitutive description of FPA aging shed new light on our understanding of peripheral arterial disease pathophysiology and arterial aging. Application of this knowledge might improve patient selection for specific treatment modalities in personalized, precision medicine algorithms and could assist in device development for treatment of peripheral artery disease.


Asunto(s)
Envejecimiento , Arterias/fisiología , Modelos Biológicos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos , Colágeno/metabolismo , Elastina/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Arterial Periférica/fisiopatología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA