Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Thromb Haemost ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925489

RESUMEN

BACKGROUND: Tissue factor pathway inhibitor (TFPI) regulates tissue factor-triggered coagulation. Humans and mice express transcripts encoding for multidistributed (endothelial, platelet, and plasma) 3-Kunitz domain TFPIα and endothelial membrane-anchored 2-Kunitz TFPIß. Mice express a third transcript, γ, that encodes plasma lipoprotein-associated 2-Kunitz TFPI. In humans, proteolysis of α and/or ß produces plasma lipoprotein-associated 2-Kunitz TFPI at lower levels. In clinical trials, monoclonal antibodies that target all TFPI isoforms extend coagulation and correct bleeding in hemophilic patients but with some thrombosis risks. OBJECTIVES: To determine the impact of TFPI isoform-specific deletions on promoting clotting in hemophilic mice. METHODS: Engineered TFPI isoform-specific, hemophilic (factor VIII-null) mice were evaluated for clotting. RESULTS: Mice expressing any single TFPI isoform were healthy. Thrombin generation assays identified TFPIγ as the dominant anticoagulation isoform in mouse plasma. Hemostasis was assessed by serial bleeding times from a tail vein laceration. Repeatedly, after a clot forms, it was manually disrupted; the number of clots/disruptions occurring over a 15-minute period were reported. C57BL/6 and hemophilic mice clot on average 25.6 vs 5.4 times, respectively. On a hemophilia background, TFPIß or TFPIγ-specific deletion improved clotting to 14.6 and 15.2 times, respectively (P < .0001). TFPIα-specific deletion was without impact, clotting 5.1 times. Heterozygous deletion of TFPIß was effective, clotting 11.8 times (P < .0001). Heterozygous deletion of TFPIα or TFPIγ alone was ineffective, clotting 3.0 and 6.1 times, respectively, but heterozygous TFPIαγ deletion improved clotting to 11.2 times (P < .001). CONCLUSION: In hemophilic mice, endothelial TFPIß and plasma γ-derived 2-Kunitz TFPI individually contribute more to bleeding than total TFPIα.

2.
J Clin Invest ; 134(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38060311

RESUMEN

Platelets from patients with myeloproliferative neoplasms (MPNs) exhibit a hyperreactive phenotype. Here, we found elevated P-selectin exposure and platelet-leukocyte aggregates indicating activation of platelets from essential thrombocythemia (ET) patients. Single-cell RNA-seq analysis of primary samples revealed significant enrichment of transcripts related to platelet activation, mTOR, and oxidative phosphorylation in ET patient platelets. These observations were validated via proteomic profiling. Platelet metabolomics revealed distinct metabolic phenotypes consisting of elevated ATP generation accompanied by increases in the levels of multiple intermediates of the tricarboxylic acid cycle, but lower α-ketoglutarate (α-KG) in MPN patients. Inhibition of PI3K/AKT/mTOR signaling significantly reduced metabolic responses and hyperreactivity in MPN patient platelets, while α-KG supplementation markedly reduced oxygen consumption and ATP generation. Ex vivo incubation of platelets from both MPN patients and Jak2 V617F-knockin mice with α-KG supplementation significantly reduced platelet activation responses. Oral α-KG supplementation of Jak2 V617F mice decreased splenomegaly and reduced hematocrit, monocyte, and platelet counts. Finally, α-KG treatment significantly decreased proinflammatory cytokine secretion from MPN CD14+ monocytes. Our results reveal a previously unrecognized metabolic disorder in conjunction with aberrant PI3K/AKT/mTOR signaling that contributes to platelet hyperreactivity in MPN patients.


Asunto(s)
Trastornos Mieloproliferativos , Neoplasias , Trombocitemia Esencial , Humanos , Ratones , Animales , Multiómica , Fosfatidilinositol 3-Quinasas/genética , Proteómica , Proteínas Proto-Oncogénicas c-akt/genética , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Trombocitemia Esencial/genética , Inflamación , Serina-Treonina Quinasas TOR/genética , Adenosina Trifosfato , Janus Quinasa 2/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...