Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biofactors ; 40(6): 646-57, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25529897

RESUMEN

The thiazolidinedione (TZDs) class of drugs are very effective for the treatment of type 2 diabetes mellitus (T2DM). But due to the adverse effects of synthetic TZDs, their use is strictly regulated. The therapeutic actions of TZDs are mediated via modulation of peroxisome proliferator-activated receptor gamma (PPARγ). Naturally occurring PPARγ modulators are more desirable as they lack the serious adverse effects caused by TZDs. This has prompted the exploitation of medicinal plants used in traditional medicine, for their potential PPARγ activity. In the present work, we studied chebulagic acid (CHA) isolated from fruits of Terminalia chebula with respect to its effect on adipogenesis, glucose transport, and endocrine function of adipocyte. The mRNA expression profile of PPARγ target gene CCAAT/enhancer-binding protein alpha (C/EBP-α) was analyzed by qRT-PCR. The putative binding mode and the potential ligand-target interactions of CHA, with PPARγ was analyzed using docking software (Autodock and iGEMDOCKv2). The results showed that CHA enhances PPARγ signaling and adipogenesis dose dependently but in a moderate way, less than rosiglitazone. GLUT4 expression and adiponectin secretion was increased by CHA treatment. The mRNA expression of PPARγ target gene C/EBP-α was increased in CHA -treated adipocytes. The comparison of results of various parameters of adipogenesis, insulin sensitivity, endocrine function and molecular docking experiments of roziglitazone and chebulagic acid indicate that the latter behaves like partial PPARγ agonist which could be exploited for phytoceutical development against T2DM.


Asunto(s)
Adipocitos/efectos de los fármacos , Benzopiranos/farmacología , Glucosa/metabolismo , Glucósidos/farmacología , Hipoglucemiantes/farmacología , Insulina/metabolismo , PPAR gamma/agonistas , Terminalia/química , Células 3T3-L1 , Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Adiponectina/agonistas , Adiponectina/genética , Adiponectina/metabolismo , Animales , Benzopiranos/aislamiento & purificación , Transporte Biológico/efectos de los fármacos , Proteínas Potenciadoras de Unión a CCAAT/agonistas , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Diferenciación Celular , Frutas/química , Regulación de la Expresión Génica , Transportador de Glucosa de Tipo 4/agonistas , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Glucósidos/aislamiento & purificación , Hipoglucemiantes/aislamiento & purificación , Insulina/farmacología , Resistencia a la Insulina , Metanol , Ratones , Simulación del Acoplamiento Molecular , PPAR gamma/genética , PPAR gamma/metabolismo , Extractos Vegetales/química , Transducción de Señal , Solventes
2.
Biofactors ; 40(5): 513-23, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25110893

RESUMEN

Obesity induced metabolic syndrome is increasing worldwide at an alarming rate. It is characterized by excessive expansion of white adipose tissue which leads to hypoxia and impairs normal metabolism. Recent studies reveal that hypoxia could be one of the factors for inflammation, insulin resistance and other obesity related complications. There is a high demand for anti-obese phytoceuticals to control and manage the complications resulting from obesity. In this study, we investigated how hypoxia affect the physiological functions of 3T3-L1 adipocytes emphasizing on oxidative stress, inflammation, and mitochondrial functions. We also evaluated the protective role of various doses of curcumin, a well-known dietary antioxidant, on hypoxia induced alterations. The results revealed that hypoxia significantly altered the vital parameters of adipocyte biology like HIF 1α expression (103.47% ↑), lactate, and glycerol release (184.34% and 69.1% ↑, respectively), reactive oxygen species production (432.53% ↑), lipid and protein oxidation (376.6% and 566.6% ↑, respectively), reduction in antioxidant enzymes (superoxide dismutase and catalase) status, secretion of inflammatory markers (TNF α, IL 6, IL 1ß, and IFN γ), and mitochondrial functions (mitochondrial mass, membrane potential, permeability transition pore integrity, and superoxide generation). Curcumin substantially protected adipocytes from toxic effects of hypoxia in a dose dependent manner by protecting mitochondria and down regulating inflammation. Acriflavine is used as a positive control. A detailed investigation is required for the development of curcumin as an effective nutraceutical against obesity.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Curcumina/farmacología , Mitocondrias/metabolismo , Células 3T3-L1 , Adipocitos , Animales , Hipoxia de la Célula , Citocinas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ácido Láctico/metabolismo , Peroxidación de Lípido , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Estrés Oxidativo , Carbonilación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...