Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Drug Resist ; 16: 2939-2952, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37201122

RESUMEN

Purpose: Acinetobacter baumannii (A. baumannii or AB) is one of the most opportunistic, nosocomial pathogens threatening public healthcare across countries. A. baumannii has become a primary growing concern due to its exceptional ability to acquire antimicrobial resistance (AMR) to multiple antimicrobial agents which is increasingly reported and more prevalent every year. Therefore, there is an urgent need to evaluate the AMR knowledge of A. baumannii for effective clinical treatment of nosocomial infections. This study aimed to investigate the clinical distribution AMR phenotypes and genotypes, and genomic characteristics of A. baumannii isolates recovered from hospitalized patients of different clinical departments of a sentinel hospital to improve clinical practices. Methods: A total of 123 clinical isolates were recovered from hospitalized patients of different clinical departments during 2019-2021 to analyze AMR patterns, and further subjected to whole-genome sequencing (WGS) investigations. Multi-locus sequence typing (MLST), as well as the presence of antimicrobial-resistant genes (ARGs), virulence factor genes (VFGs) and insertion sequences (ISs) were also investigated from WGS data. Results: The results highlighted that A. baumannii clinical isolates had shown a high AMR rate, particularly from the intensive care unit (ICU), towards routinely used antimicrobials, ie, ß-lactams and fluoroquinolones. ST2 was the most prevalent ST in the clinical isolates, it was strongly associated to the resistance of cephalosporins and carbapenems, with blaOXA-23 and blaOXA-66 being the most frequent determinants; moreover, high carrier rate of VFGs was also observed such as all strains containing the ompA, adeF, pgaC, lpsB, and bfmR genes. Conclusion: Acinetobacter baumannii clinical isolates are mostly ST2 with high rates of drug resistance and carrier of virulence factors. Therefore, it requires measurements to control its transmission and infection.

2.
Int J Food Microbiol ; 366: 109572, 2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35176609

RESUMEN

Listeria monocytogenes remains a significant public health threat, leading to invasive listeriosis with severe manifestations (i.e. septicemia, meningitis, and abortion) and up to 30% of fatal cases. Here, we aimed to investigate genotypic diversity, virulence profiles, antimicrobial resistance patterns from a large and integrated population of L. monocytogenes isolates in China (n = 369), including food (n = 326), livestock (n = 25), and hospitalized humans (n = 18) over the years (2002-2019). PCR-based serogrouping showed the dominance of serogroup 1/2a-3a (37.4%) in food, 4a-4c (76%) in livestock, and 1/2a-3a (44.4%) in humans. Phylogenetic lineage analysis revealed the dominance of lineage II (63.4%) in food, lineage III (76%) in livestock, and lineage II (55.5%) in humans. Altogether, 369 isolates were grouped into 55 sequence types (STs) via multi-locus sequence typing (MLST), which belonged to 26 clonal complexes (CCs) and 17 singletons. Among various STs, ST9 (26%) was the most abundant in food, ST202 (76%) in livestock, and ST8 (16.6%) in humans. Overall, ST4/CC4, ST218/CC218, and ST619 isolates harbored both LIPI-3 and LIPI-4 genes subsets indicating their hypervirulence potential. Additionally, a low resistance was observed towards tetracycline (5.1%), erythromycin (3.2%), cotrimoxazole (2.9%), chloramphenicol (2.7%), gentamicin (2.4%), and ampicillin (2.1%). Collectively, detection of hypervirulent determinants and antimicrobial-resistant phenotype among Chinese isolates poses an alarming threat to food safety and public health, which requires a continued and enhanced surveillance system for further prevention of human listeriosis.


Asunto(s)
Farmacorresistencia Bacteriana , Listeria monocytogenes , Animales , Antibacterianos/farmacología , China/epidemiología , Microbiología de Alimentos , Variación Genética , Humanos , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/genética , Listeriosis/epidemiología , Listeriosis/veterinaria , Ganado/microbiología , Tipificación de Secuencias Multilocus , Filogenia , Factores de Virulencia/genética
3.
Front Cell Infect Microbiol ; 11: 718840, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34778102

RESUMEN

Listeria monocytogenes remains a significant public health threat, causing invasive listeriosis manifested as septicemia, meningitis, and abortion, with up to 30% of cases having a fatal outcome. Tracking the spread of invasive listeriosis requires an updated knowledge for virulence factors (VFs) and antimicrobial resistance features, which is an essential step toward its clinical diagnosis and treatment. Taking advantage of high-throughput genomic sequencing, we proposed that the differential genes based on the pathogenomic composition could be used to evaluate clinical observations and therapeutic options for listeriosis. Here, we performed the comparative genomic analysis of 60 strains from five continents with a diverse range of sources, representing serotypes 1/2a, 1/2b, 1/2c, and 4b, comprising lineage I and lineage II and including 13 newly contributed Chinese isolates from clinical cases. These strains were associated with globally distributed clonal groups linked with confirmed foodborne listeriosis outbreak and sporadic cases. We found that L. monocytogenes strains from clonal complex (CC) CC8, CC7, CC9, and CC415 carried most of the adherence and invasive genes. Conversely, CC1, CC2, CC4, and CC6 have the least number of adherence and invasive genes. Additionally, Listeria pathogenicity island-1 (LIPI-1), LIPI-2, intracellular survival, surface anchoring, and bile salt resistance genes were detected in all isolates. Importantly, LIPI-3 genes were harbored in CC3, CC224, and ST619 of the Chinese isolates and in CC1, CC4, and CC6 of other worldwide isolates. Notably, Chinese isolates belonging to CC14 carried antibiotic resistance genes (ARGs) against ß-lactams (blaTEM-101, blaTEM-105) and macrolide (ermC-15), whereas CC7 and CC8 isolates harbored ARGs against aminoglycoside (aadA10_2, aadA6_1), which may pose a threat to therapeutic efficacy. Phylogenomic analysis showed that CC8, CC7, and CC5 of Chinese isolates, CC8 (Swiss and Italian isolates), and CC5 and CC7 (Canadian isolates) are closely clustered together and belonged to the same CC. Additionally, CC381 and CC29 of Chinese isolates shared the same genomic pattern as CC26 of Swiss isolate and CC37 of Canadian isolate, respectively, indicating strong phylogenomic relation between these isolates. Collectively, this study highlights considerable clonal diversity with well-recognized virulence and antimicrobial-resistant determinants among Chinese and worldwide isolates that stress to design improved strategies for clinical therapies.


Asunto(s)
Listeria monocytogenes , Listeriosis , Antibacterianos/farmacología , Canadá , Farmacorresistencia Bacteriana/genética , Microbiología de Alimentos , Genómica , Humanos , Listeria monocytogenes/genética , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...