Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Med ; 14(1): 84, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35948990

RESUMEN

BACKGROUND: Expansions of short tandem repeats are the cause of many neurogenetic disorders including familial amyotrophic lateral sclerosis, Huntington disease, and many others. Multiple methods have been recently developed that can identify repeat expansions in whole genome or exome sequencing data. Despite the widely recognized need for visual assessment of variant calls in clinical settings, current computational tools lack the ability to produce such visualizations for repeat expansions. Expanded repeats are difficult to visualize because they correspond to large insertions relative to the reference genome and involve many misaligning and ambiguously aligning reads. RESULTS: We implemented REViewer, a computational method for visualization of sequencing data in genomic regions containing long repeat expansions and FlipBook, a companion image viewer designed for manual curation of large collections of REViewer images. To generate a read pileup, REViewer reconstructs local haplotype sequences and distributes reads to these haplotypes in a way that is most consistent with the fragment lengths and evenness of read coverage. To create appropriate training materials for onboarding new users, we performed a concordance study involving 12 scientists involved in short tandem repeat research. We used the results of this study to create a user guide that describes the basic principles of using REViewer as well as a guide to the typical features of read pileups that correspond to low confidence repeat genotype calls. Additionally, we demonstrated that REViewer can be used to annotate clinically relevant repeat interruptions by comparing visual assessment results of 44 FMR1 repeat alleles with the results of triplet repeat primed PCR. For 38 of these alleles, the results of visual assessment were consistent with triplet repeat primed PCR. CONCLUSIONS: Read pileup plots generated by REViewer offer an intuitive way to visualize sequencing data in regions containing long repeat expansions. Laboratories can use REViewer and FlipBook to assess the quality of repeat genotype calls as well as to visually detect interruptions or other imperfections in the repeat sequence and the surrounding flanking regions. REViewer and FlipBook are available under open-source licenses at https://github.com/illumina/REViewer and https://github.com/broadinstitute/flipbook respectively.


Asunto(s)
Esclerosis Amiotrófica Lateral , Secuencias Repetidas en Tándem , Alelos , Esclerosis Amiotrófica Lateral/genética , Exoma , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos
2.
Genome Biol ; 23(1): 74, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255937

RESUMEN

Human-associated microbial communities comprise not only complex mixtures of bacterial species, but also mixtures of conspecific strains, the implications of which are mostly unknown since strain level dynamics are underexplored due to the difficulties of studying them. We introduce the Strain Genome Explorer (StrainGE) toolkit, which deconvolves strain mixtures and characterizes component strains at the nucleotide level from short-read metagenomic sequencing with higher sensitivity and resolution than other tools. StrainGE is able to identify strains at 0.1x coverage and detect variants for multiple conspecific strains within a sample from coverages as low as 0.5x.


Asunto(s)
Microbiota , Bacterias/genética , Humanos , Metagenoma , Metagenómica , Microbiota/genética
3.
Front Microbiol ; 11: 1925, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013732

RESUMEN

Metagenomic sequencing is a powerful tool for examining the diversity and complexity of microbial communities. Most widely used tools for taxonomic profiling of metagenomic sequence data allow for a species-level overview of the composition. However, individual strains within a species can differ greatly in key genotypic and phenotypic characteristics, such as drug resistance, virulence and growth rate. Therefore, the ability to resolve microbial communities down to the level of individual strains within a species is critical to interpreting metagenomic data for clinical and environmental applications, where identifying a particular strain, or tracking a particular strain across a set of samples, can help aid in clinical diagnosis and treatment, or in characterizing yet unstudied strains across novel environmental locations. Recently published approaches have begun to tackle the problem of resolving strains within a particular species in metagenomic samples. In this review, we present an overview of these new algorithms and their uses, including methods based on assembly reconstruction and methods operating with or without a reference database. While existing metagenomic analysis methods show reasonable performance at the species and higher taxonomic levels, identifying closely related strains within a species presents a bigger challenge, due to the diversity of databases, genetic relatedness, and goals when conducting these analyses. Selection of which metagenomic tool to employ for a specific application should be performed on a case-by case basis as these tools have strengths and weaknesses that affect their performance on specific tasks. A comprehensive benchmark across different use case scenarios is vital to validate performance of these tools on microbial samples. Because strain-level metagenomic analysis is still in its infancy, development of more fine-grained, high-resolution algorithms will continue to be in demand for the future.

4.
BMC Genomics ; 21(1): 80, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992201

RESUMEN

BACKGROUND: Mixed infections of Mycobacterium tuberculosis and antibiotic heteroresistance continue to complicate tuberculosis (TB) diagnosis and treatment. Detection of mixed infections has been limited to molecular genotyping techniques, which lack the sensitivity and resolution to accurately estimate the multiplicity of TB infections. In contrast, whole genome sequencing offers sensitive views of the genetic differences between strains of M. tuberculosis within a sample. Although metagenomic tools exist to classify strains in a metagenomic sample, most tools have been developed for more divergent species, and therefore cannot provide the sensitivity required to disentangle strains within closely related bacterial species such as M. tuberculosis. Here we present QuantTB, a method to identify and quantify individual M. tuberculosis strains in whole genome sequencing data. QuantTB uses SNP markers to determine the combination of strains that best explain the allelic variation observed in a sample. QuantTB outputs a list of identified strains, their corresponding relative abundances, and a list of drugs for which resistance-conferring mutations (or heteroresistance) have been predicted within the sample. RESULTS: We show that QuantTB has a high degree of resolution and is capable of differentiating communities differing by less than 25 SNPs and identifying strains down to 1× coverage. Using simulated data, we found QuantTB outperformed other metagenomic strain identification tools at detecting strains and quantifying strain multiplicity. In a real-world scenario, using a dataset of 50 paired clinical isolates from a study of patients with either reinfections or relapses, we found that QuantTB could detect mixed infections and reinfections at rates concordant with a manually curated approach. CONCLUSION: QuantTB can determine infection multiplicity, identify hetero-resistance patterns, enable differentiation between relapse and re-infection, and clarify transmission events across seemingly unrelated patients - even in low-coverage (1×) samples. QuantTB outperforms existing tools and promises to serve as a valuable resource for both clinicians and researchers working with clinical TB samples.


Asunto(s)
Biología Computacional/métodos , Genoma Bacteriano , Genómica , Mycobacterium tuberculosis/genética , Tuberculosis/microbiología , Secuenciación Completa del Genoma , Algoritmos , Antituberculosos/farmacología , Bases de Datos Genéticas , Farmacorresistencia Bacteriana , Genómica/métodos , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/efectos de los fármacos , Filogenia , Polimorfismo de Nucleótido Simple , Tuberculosis/tratamiento farmacológico
5.
PLoS Comput Biol ; 16(1): e1007314, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31971941

RESUMEN

The last decade has witnessed a remarkable increase in our ability to measure genetic information. Advancements of sequencing technologies are challenging the existing methods of data storage and analysis. While methods to cope with the data deluge are progressing, many biologists have lagged behind due to the fast pace of computational advancements and tools available to address their scientific questions. Future generations of biologists must be more computationally aware and capable. This means they should be trained to give them the computational skills to keep pace with technological developments. Here, we propose a model that bridges experimental and bioinformatics concepts using the Oxford Nanopore Technologies (ONT) sequencing platform. We provide both a guide to begin to empower the new generation of educators, scientists, and students in performing long-read assembly of bacterial and bacteriophage genomes and a standalone virtual machine containing all the required software and learning materials for the course.


Asunto(s)
Biología Computacional/educación , Secuenciación de Nanoporos , Humanos , Programas Informáticos
6.
Nat Genet ; 49(10): 1428-1436, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28869592

RESUMEN

We propose a new method for determining the target genes of transcriptional enhancers in specific cells and tissues. It combines global trends across many samples and sample-specific information, and considers the joint effect of multiple enhancers. Our method outperforms existing methods when predicting the target genes of enhancers in unseen samples, as evaluated by independent experimental data. Requiring few types of input data, we are able to apply our method to reconstruct the enhancer-target networks in 935 samples of human primary cells, tissues and cell lines, which constitute by far the largest set of enhancer-target networks. The similarity of these networks from different samples closely follows their cell and tissue lineages. We discover three major co-regulation modes of enhancers and find defense-related genes often simultaneously regulated by multiple enhancers bound by different transcription factors. We also identify differentially methylated enhancers in hepatocellular carcinoma (HCC) and experimentally confirm their altered regulation of HCC-related genes.


Asunto(s)
Elementos de Facilitación Genéticos , Epigénesis Genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes/genética , Transcripción Genética , Carcinoma Hepatocelular/genética , Línea Celular , Metilación de ADN , Genes Relacionados con las Neoplasias , Humanos , Células K562 , Neoplasias Hepáticas/genética , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Fosfoproteínas/biosíntesis , Fosfoproteínas/genética , Cultivo Primario de Células , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/genética , Telomerasa/biosíntesis , Telomerasa/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...