Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 42(3): 424-436, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37169967

RESUMEN

Genetically engineered mouse models only capture a small fraction of the genetic lesions that drive human cancer. Current CRISPR-Cas9 models can expand this fraction but are limited by their reliance on error-prone DNA repair. Here we develop a system for in vivo prime editing by encoding a Cre-inducible prime editor in the mouse germline. This model allows rapid, precise engineering of a wide range of mutations in cell lines and organoids derived from primary tissues, including a clinically relevant Kras mutation associated with drug resistance and Trp53 hotspot mutations commonly observed in pancreatic cancer. With this system, we demonstrate somatic prime editing in vivo using lipid nanoparticles, and we model lung and pancreatic cancer through viral delivery of prime editing guide RNAs or orthotopic transplantation of prime-edited organoids. We believe that this approach will accelerate functional studies of cancer-associated mutations and complex genetic combinations that are challenging to construct with traditional models.


Asunto(s)
Neoplasias Pancreáticas , ARN Guía de Sistemas CRISPR-Cas , Ratones , Humanos , Animales , Ratones Transgénicos , Mutación/genética , Neoplasias Pancreáticas/genética , Línea Celular , Edición Génica , Sistemas CRISPR-Cas/genética
2.
Nat Biotechnol ; 42(2): 253-264, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37142705

RESUMEN

Realizing the promise of prime editing for the study and treatment of genetic disorders requires efficient methods for delivering prime editors (PEs) in vivo. Here we describe the identification of bottlenecks limiting adeno-associated virus (AAV)-mediated prime editing in vivo and the development of AAV-PE vectors with increased PE expression, prime editing guide RNA stability and modulation of DNA repair. The resulting dual-AAV systems, v1em and v3em PE-AAV, enable therapeutically relevant prime editing in mouse brain (up to 42% efficiency in cortex), liver (up to 46%) and heart (up to 11%). We apply these systems to install putative protective mutations in vivo for Alzheimer's disease in astrocytes and for coronary artery disease in hepatocytes. In vivo prime editing with v3em PE-AAV caused no detectable off-target effects or significant changes in liver enzymes or histology. Optimized PE-AAV systems support the highest unenriched levels of in vivo prime editing reported to date, facilitating the study and potential treatment of diseases with a genetic component.


Asunto(s)
Edición Génica , ARN Guía de Sistemas CRISPR-Cas , Ratones , Animales , Edición Génica/métodos , Hígado/metabolismo , Hepatocitos/metabolismo , Encéfalo , Sistemas CRISPR-Cas
4.
Nat Biotechnol ; 40(3): 402-410, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34608327

RESUMEN

Prime editing enables the installation of virtually any combination of point mutations, small insertions or small deletions in the DNA of living cells. A prime editing guide RNA (pegRNA) directs the prime editor protein to the targeted locus and also encodes the desired edit. Here we show that degradation of the 3' region of the pegRNA that contains the reverse transcriptase template and the primer binding site can poison the activity of prime editing systems, impeding editing efficiency. We incorporated structured RNA motifs to the 3' terminus of pegRNAs that enhance their stability and prevent degradation of the 3' extension. The resulting engineered pegRNAs (epegRNAs) improve prime editing efficiency 3-4-fold in HeLa, U2OS and K562 cells and in primary human fibroblasts without increasing off-target editing activity. We optimized the choice of 3' structural motif and developed pegLIT, a computational tool to identify non-interfering nucleotide linkers between pegRNAs and 3' motifs. Finally, we showed that epegRNAs enhance the efficiency of the installation or correction of disease-relevant mutations.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , ADN/genética , Edición Génica/métodos , Humanos , ARN Guía de Kinetoplastida/genética , ADN Polimerasa Dirigida por ARN/genética
5.
Nat Biotechnol ; 40(5): 731-740, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34887556

RESUMEN

The targeted deletion, replacement, integration or inversion of genomic sequences could be used to study or treat human genetic diseases, but existing methods typically require double-strand DNA breaks (DSBs) that lead to undesired consequences, including uncontrolled indel mixtures and chromosomal abnormalities. Here we describe twin prime editing (twinPE), a DSB-independent method that uses a prime editor protein and two prime editing guide RNAs (pegRNAs) for the programmable replacement or excision of DNA sequences at endogenous human genomic sites. The two pegRNAs template the synthesis of complementary DNA flaps on opposing strands of genomic DNA, which replace the endogenous DNA sequence between the prime-editor-induced nick sites. When combined with a site-specific serine recombinase, twinPE enabled targeted integration of gene-sized DNA plasmids (>5,000 bp) and targeted sequence inversions of 40 kb in human cells. TwinPE expands the capabilities of precision gene editing and might synergize with other tools for the correction or complementation of large or complex human pathogenic alleles.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Secuencia de Bases , Inversión Cromosómica , ADN/genética , Edición Génica/métodos , Humanos , ARN Guía de Kinetoplastida/genética
7.
Nat Biotechnol ; 39(11): 1414-1425, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34183861

RESUMEN

Programmable C•G-to-G•C base editors (CGBEs) have broad scientific and therapeutic potential, but their editing outcomes have proved difficult to predict and their editing efficiency and product purity are often low. We describe a suite of engineered CGBEs paired with machine learning models to enable efficient, high-purity C•G-to-G•C base editing. We performed a CRISPR interference (CRISPRi) screen targeting DNA repair genes to identify factors that affect C•G-to-G•C editing outcomes and used these insights to develop CGBEs with diverse editing profiles. We characterized ten promising CGBEs on a library of 10,638 genomically integrated target sites in mammalian cells and trained machine learning models that accurately predict the purity and yield of editing outcomes (R = 0.90) using these data. These CGBEs enable correction to the wild-type coding sequence of 546 disease-related transversion single-nucleotide variants (SNVs) with >90% precision (mean 96%) and up to 70% efficiency (mean 14%). Computational prediction of optimal CGBE-single-guide RNA pairs enables high-purity transversion base editing at over fourfold more target sites than achieved using any single CGBE variant.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Animales , Sistemas CRISPR-Cas/genética , Aprendizaje Automático , Mamíferos/genética , ARN Guía de Kinetoplastida/genética
8.
Nat Commun ; 12(1): 1034, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589617

RESUMEN

Prime editing (PE) is a versatile genome editing technology, but design of the required guide RNAs is more complex than for standard CRISPR-based nucleases or base editors. Here we describe PrimeDesign, a user-friendly, end-to-end web application and command-line tool for the design of PE experiments. PrimeDesign can be used for single and combination editing applications, as well as genome-wide and saturation mutagenesis screens. Using PrimeDesign, we construct PrimeVar, a comprehensive and searchable database that includes candidate prime editing guide RNA (pegRNA) and nicking sgRNA (ngRNA) combinations for installing or correcting >68,500 pathogenic human genetic variants from the ClinVar database. Finally, we use PrimeDesign to design pegRNAs/ngRNAs to install a variety of human pathogenic variants in human cells.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Genoma Humano , ARN Guía de Kinetoplastida/genética , Emparejamiento Base , Secuencia de Bases , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Bases de Datos Genéticas , Enfermedad de Fabry/genética , Enfermedad de Fabry/metabolismo , Enfermedad de Fabry/patología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Hemofilia A/genética , Hemofilia A/metabolismo , Hemofilia A/patología , Humanos , Modelos Biológicos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Mutación , Conformación de Ácido Nucleico , Plásmidos/química , Plásmidos/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
9.
Nat Biotechnol ; 38(7): 824-844, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32572269

RESUMEN

The development of new CRISPR-Cas genome editing tools continues to drive major advances in the life sciences. Four classes of CRISPR-Cas-derived genome editing agents-nucleases, base editors, transposases/recombinases and prime editors-are currently available for modifying genomes in experimental systems. Some of these agents have also moved rapidly into the clinic. Each tool comes with its own capabilities and limitations, and major efforts have broadened their editing capabilities, expanded their targeting scope and improved editing specificity. We analyze key considerations when choosing genome editing agents and identify opportunities for future improvements and applications in basic research and therapeutics.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica , Genoma/genética , Roturas del ADN de Doble Cadena , Endonucleasas/genética , Edición Génica/métodos , Humanos , Recombinasas/genética , Transposasas/genética
10.
Nat Biotechnol ; 38(5): 582-585, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32393904

RESUMEN

Prime editors, which are CRISPR-Cas9 nickase (H840A)-reverse transcriptase fusions programmed with prime editing guide RNAs (pegRNAs), can edit bases in mammalian cells without donor DNA or double-strand breaks. We adapted prime editors for use in plants through codon, promoter, and editing-condition optimization. The resulting suite of plant prime editors enable point mutations, insertions and deletions in rice and wheat protoplasts. Regenerated prime-edited rice plants were obtained at frequencies of up to 21.8%.


Asunto(s)
Edición Génica/métodos , Oryza/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Sistemas CRISPR-Cas , Desoxirribonucleasa I/metabolismo , Genoma de Planta , Oryza/genética , Triticum/genética
11.
Nature ; 576(7785): 149-157, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31634902

RESUMEN

Most genetic variants that contribute to disease1 are challenging to correct efficiently and without excess byproducts2-5. Here we describe prime editing, a versatile and precise genome editing method that directly writes new genetic information into a specified DNA site using a catalytically impaired Cas9 endonuclease fused to an engineered reverse transcriptase, programmed with a prime editing guide RNA (pegRNA) that both specifies the target site and encodes the desired edit. We performed more than 175 edits in human cells, including targeted insertions, deletions, and all 12 types of point mutation, without requiring double-strand breaks or donor DNA templates. We used prime editing in human cells to correct, efficiently and with few byproducts, the primary genetic causes of sickle cell disease (requiring a transversion in HBB) and Tay-Sachs disease (requiring a deletion in HEXA); to install a protective transversion in PRNP; and to insert various tags and epitopes precisely into target loci. Four human cell lines and primary post-mitotic mouse cortical neurons support prime editing with varying efficiencies. Prime editing shows higher or similar efficiency and fewer byproducts than homology-directed repair, has complementary strengths and weaknesses compared to base editing, and induces much lower off-target editing than Cas9 nuclease at known Cas9 off-target sites. Prime editing substantially expands the scope and capabilities of genome editing, and in principle could correct up to 89% of known genetic variants associated with human diseases.


Asunto(s)
ADN/genética , Edición Génica , Línea Celular , Roturas del ADN de Doble Cadena , Genoma , Humanos , Mutación Puntual , Saccharomyces cerevisiae
12.
Biochemistry ; 58(8): 1167-1178, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30698415

RESUMEN

RNA signals located downstream of stop codons in eukaryotic mRNAs can stimulate high levels of translational readthrough by the ribosome, thereby giving rise to functionally distinct C-terminally extended protein products. Although many readthrough events have been previously discovered in Nature, a broader description of the stimulatory RNA signals would help to identify new reprogramming events in eukaryotic genes and provide insights into the molecular mechanisms of readthrough. Here, we explore the RNA reprogramming landscape by performing in vitro translation selections to enrich RNA readthrough signals de novo from a starting randomized library comprising >1013 unique sequence variants. Selection products were characterized using high-throughput sequencing, from which we identified primary sequence and secondary structure readthrough features. The activities of readthrough signals, including three novel sequence motifs, were confirmed in cellular reporter assays. Then, we used machine learning and our HTS data to predict readthrough activity from human 3'-untranslated region sequences. This led to the discovery of >1.5% readthrough in four human genes (CDKN2B, LEPROTL1, PVRL3, and SFTA2). Together, our results provide valuable insights into RNA-mediated translation reprogramming, offer tools for readthrough discovery in eukaryotic genes, and present new opportunities to explore the biological consequences of stop codon readthrough in humans.


Asunto(s)
Regiones no Traducidas 3'/genética , Codón de Terminación/genética , Regulación de la Expresión Génica , ARN Mensajero/genética , ARN/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Técnicas In Vitro , Nectinas/genética , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
13.
Nature ; 544(7651): 465-470, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28424513

RESUMEN

The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure-function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a 'colour barrier', owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the potential of this 24-colour (super-multiplex) optical imaging approach for elucidating intricate interactions in complex biological systems.


Asunto(s)
Imagen Molecular/métodos , Espectrometría Raman/métodos , Vibración , Animales , Encéfalo/citología , Línea Celular , Supervivencia Celular , Técnicas de Cocultivo , Color , Colorantes/análisis , Colorantes/química , ADN/metabolismo , Electrones , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/química , Humanos , Rayos Infrarrojos , Ratones , Neuronas/citología , Especificidad de Órganos , Proteínas/metabolismo
14.
Chem Commun (Camb) ; 52(60): 9442-5, 2016 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-27377037

RESUMEN

We report the design and synthesis of a photoactivatable azido-acyl oxazine fluorophore. Photoactivation is achieved cleanly and rapidly with UV light, producing a single fluorescent oxazine photoproduct. We demonstrate the utility of azido-acyl caged oxazines for protein specific labeling in living mammalian cells using the TMP-tag technology.


Asunto(s)
Colorantes Fluorescentes/síntesis química , Imagen Óptica , Oxazinas/síntesis química , Animales , Colorantes Fluorescentes/química , Humanos , Estructura Molecular , Oxazinas/química , Procesos Fotoquímicos
15.
Nat Methods ; 13(5): 453-8, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26999002

RESUMEN

Protein synthesis in eukaryotes is regulated by diverse reprogramming mechanisms that expand the coding capacity of individual genes. Here, we exploit one such mechanism, termed -1 programmed ribosomal frameshifting (-1 PRF), to engineer ligand-responsive RNA switches that regulate protein expression. First, efficient -1 PRF stimulatory RNA elements were discovered by in vitro selection; then, ligand-responsive switches were constructed by coupling -1 PRF stimulatory elements to RNA aptamers using rational design and directed evolution in Saccharomyces cerevisiae. We demonstrate that -1 PRF switches tightly control the relative stoichiometry of two distinct protein outputs from a single mRNA, exhibiting consistent ligand response across whole populations of cells. Furthermore, -1 PRF switches were applied to build single-mRNA logic gates and an apoptosis module in yeast. Together, these results showcase the potential for harnessing translation-reprogramming mechanisms for synthetic biology, and they establish -1 PRF switches as powerful RNA tools for controlling protein synthesis in eukaryotes.


Asunto(s)
Biotecnología/métodos , Reprogramación Celular/genética , Sistema de Lectura Ribosómico/genética , Biosíntesis de Proteínas/genética , Riboswitch/genética , Saccharomyces cerevisiae/genética , Evolución Molecular Dirigida , Regulación Fúngica de la Expresión Génica , Ligandos , ARN de Hongos/química , ARN de Hongos/genética , ARN Mensajero/química , Saccharomyces cerevisiae/metabolismo
16.
Angew Chem Int Ed Engl ; 52(2): 650-4, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23169599

RESUMEN

Common ground: copper-catalyzed coupling reactions can be used for the high-yielding preparation of widely used oxazine and xanthene fluorophores from a common diaryl ether intermediate on a gram-scale. This general approach may facilitate the future development of novel fluorophores and probes with unique properties.


Asunto(s)
Colorantes Fluorescentes/síntesis química , Oxazinas/síntesis química , Xantenos/síntesis química , Ciclización , Éter/química , Colorantes Fluorescentes/química , Oxazinas/química , Xantenos/química
17.
Bioorg Med Chem Lett ; 21(1): 463-6, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21074994

RESUMEN

The synthesis and biological evaluation of potent and selective anaplastic lymphoma kinase (ALK) inhibitors from a novel class of 2,4-diaminopyrimidines, incorporating 2,3,4,5-tetrahydro-benzo[d]azepine fragments, is described. An orally bioavailable analogue (18) that displayed antitumor efficacy in ALCL xenograft models in mice was identified and extensively profiled.


Asunto(s)
Benzazepinas/química , Linfoma Anaplásico de Células Grandes/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirimidinas/química , Administración Oral , Quinasa de Linfoma Anaplásico , Animales , Benzazepinas/farmacocinética , Benzazepinas/uso terapéutico , Ratones , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/metabolismo , Pirimidinas/farmacocinética , Pirimidinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Proteínas Tirosina Quinasas Receptoras , Ensayos Antitumor por Modelo de Xenoinjerto
18.
ACS Med Chem Lett ; 1(9): 493-8, 2010 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-24900237

RESUMEN

A series of novel 7-amino-1,3,4,5-tetrahydrobenzo[b]azepin-2-one derivatives within the diaminopyrimidine class of kinase inhibitors were identified that target anaplastic lymphoma kinase (ALK). These inhibitors are potent against ALK in an isolated enzyme assay and inhibit autophosphorylation of the oncogenic fusion protein NPM-ALK in anaplastic large cell lymphoma (ALCL) cell lines. The lead inhibitor 15, which incorporates a bicyclo[2.2.1]hept-5-ene ring system in place of an aryl moiety, activates the pro-apoptotic caspases (3 and 7) and displays selective cytotoxicity against ALK-positive ALCL cells. Furthermore, 15 provides more than 40-fold selectivity against the structurally related insulin receptor, is orally bioavailable in multiple species, and displays in vivo antitumor efficacy when dosed orally in ALK-positive ALCL tumor xenografts in Scid mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...