Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36903118

RESUMEN

The impact and fracture toughness of a nanostructured, kinetically activated bainitic steel was determined using Standard methods. Prior to testing, the steel was quenched in oil and aged naturally for a period of 10 days in order to obtain a fully bainitic microstructure with a retained austenite content below 1%, resulting in a high hardness of 62HRC. The high hardness originated from the very fine microstructure of bainitic ferrite plates formed at low temperatures. It was determined that the impact toughness of the steel in the fully aged condition improved remarkably, whereas the fracture toughness was in line with expectations based on the extrapolated data available in the literature. This suggests that a very fine microstructure is most beneficial to rapid loading conditions, whereas material flaws such as coarse nitrides and non-metallic inclusions are the major limitation for obtaining a high fracture toughness.

2.
J Funct Biomater ; 13(4)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36412869

RESUMEN

Due to the growing problem of food and packaging waste, environmental awareness, and customer requirements for food safety, there is a great need for the development of innovative and functional packaging. Among these developments, the concept of active packaging is at the forefront. The shortcoming in this area is that there is still a lack of multifunctional concepts, as well as green approaches. Therefore, this work focuses on the development of active chemical substances of natural origin applied as a coating on polylactic acid (PLA) films. Biopolymer chitosan and plant extracts rich in phenolic compounds (blackberry leaves-Rubus fruticosus, needles of prickly juniper-Juniperus oxycedrus) obtained from plant biomass from Southeastern Europe were selected in this work. In order to increase the effectiveness of individual substances and to introduce multifunctionality, they were combined in the form of different colloidal structural formulations. The plant extracts were embedded in chitosan biopolymer particles and dispersed in a macromolecular chitosan solution. In addition, a two-layer coating, the first of a macromolecular chitosan solution, and the second of a dispersion of the embedded extracts in chitosan particles, was applied to the PLA films as a novel approach. The success of the coatings was monitored by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and the wettability was evaluated by contact angle measurements. Scanning electron microscopy SEM tracked the morphology and homogeneity of the coating. Antioxidation was studied by DPPH and ABTS spectrophotometric tests, and microbiological analysis of the films was performed according to the ISO 22196 Standard. Desorption of the coating from the PLA was monitored by reducing the elemental composition of the films themselves. The successful functionalization of PLA was demonstrated, while the XPS and ATR-FTIR analyses clearly showed the peaks of elemental composition of the extracts and chitosan on the PLA surface. Moreover, in all cases, the contact angle of the bilayer coatings decreased by more than 35-60% and contributed to the anti-fogging properties. The desorption experiments, due to decrease in the concentration of the specific typical element (nitrogen), indicated some migration of substances from the PLA's surface. The newly developed films also exhibited antioxidant properties, with antioxidant ABTS efficiencies ranging from 83.5 to 100% and a quite high inhibition of Gram-positive Staphylococcus aureus bacteria, averaging over 95%. The current functionalization of PLA simultaneously confers antifogging, antioxidant, and antimicrobial properties and drives the development of a biodegradable and environmentally friendly composite material using green chemistry principles.

3.
Materials (Basel) ; 15(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35888254

RESUMEN

A complex concentrated noble alloy (CCNA) of equiatomic composition (Ag20Pd20Pt20Cu20Ni20-20 at. %) was studied as a potential high-performance material. The equiatomic composition was used so that this alloy could be classified in the subgroup of high-entropy alloys (HEA). The alloy was prepared by induction melting at atmospheric pressure, using high purity elements. The degree of metastability of the cast state was estimated on the basis of changes in the microstructure during annealing at high temperatures in a protective atmosphere of argon. Characterisation of the metallographically prepared samples was performed using a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Observation shows that the microstructure of the CCNA is in a very metastable state and multiphase, consisting of a continuous base of dendritic solidification-a matrix with an interdendritic region without other microstructural components and complex spheres. A model of the probable flow of metastable solidification of the studied alloy was proposed, based on the separation of L-melts into L1 (rich in Ni) and L2 (rich in Ag). The phenomenon of liquid phase separation in the considered CCNA is based on the monotectic reaction in the Ag-Ni system.

4.
Materials (Basel) ; 15(6)2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35329748

RESUMEN

A new silver-based alloy with 2 wt.% of lanthanum (La) was studied as a potential candidate for electric contact material. The alloy was prepared by rapid solidification, performed by the melt spinning technique. Microstructural examination of the rapidly solidified ribbons revealed very fine grains of αAg and intermetallic Ag5La particles, which appear in the volume of the grains, as well as on the grain boundaries. Rapid solidification enabled high microstructural refinement and provided a suitable starting microstructure for the subsequent internal oxidation, resulting in fine submicron-sized La2O3 oxide nanoparticle formation throughout the volume of the silver matrix (αAg). The resulting nanostructured Ag-La2O3 microstructure was characterised by high-resolution FESEM and STEM, both equipped with EDX. High-temperature internal oxidation of the rapidly solidified ribbons essentially changed the microstructure. Mostly homogeneously dispersed nano-sized La2O3 were formed within the grains, as well as on the grain boundaries. Three mechanisms of internal oxidation were identified: (i) the oxidation of La from the solid solution; (ii) partial dissolution of finer Ag5La particles before the internal oxidation front and oxidation of La from the solid solution; and (iii) direct oxidation of coarser Ag5La intermetallic particles.

5.
Nanomaterials (Basel) ; 11(3)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33670845

RESUMEN

Nowadays, cost-effective, available, and flexible paper-based electronics play an essential role in the electronics industry. Herein, we present gold nanoparticles (AuNPs) as a potential raw material for gold inks in the future for such purposes. AuNPs in this research were synthesised using the ultrasonic spray pyrolysis (USP) technique from two precursors: gold (III) chloride tetrahydrate and gold (III) acetate. Synthesised AuNPs were collected in a suspension composed of deionised (D.I.) water and the stabiliser polyvinylpyrrolidone (PVP). AuNPs' suspensions were subjected to the rotavapor process to obtain gold inks with higher Au concentration (>300 ppm). ICP-MS measurements, the size and shape of AuNPs, ζ-potential, Ultraviolet-visible (UV-Vis) spectrophotometry measurements, and scanning electron microscop y (SEM) of gold inks were carried out in order to find the optimal printing parameters. In the final stage, the optical contact angle measurements were performed using a set of polar to non-polar liquids, allowing for the determination of the surface free energy of gold inks. Inkjet printing of gold inks as defined stripes on photo paper were tested, based on the characterisation results.

6.
Materials (Basel) ; 13(12)2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32549247

RESUMEN

In this research work, we synthesised poly(methyl methacrylate) (PMMA) enriched with 2 wt.% zinc oxide nanoparticles (ZnO) through conventional heat polymerisation and characterised its microstructure. It was found that the distribution of ZnO nanoparticles was homogeneous through the volume of the PMMA. The mechanical testing of the PMMA-ZnO composite primarily included the determination of the compressive properties on real dentures, while density measurements were performed using a pycnometer. The testing of functional properties involved the identification of the colour of the new PMMA-ZnO composite, where pure PMMA acted as a control. In the second step, the PMMA-ZnO cytotoxicity assays were measured in vitro, which were shown to be similar to the control PMMA. Based on this, it could be concluded that the newly formed PMMA-ZnO composite did not induce direct or indirect cytotoxic effects in L929 cell cultures; therefore, according to ISO/DIN 10993-5:2009, this composite was categorised as non-cytotoxic.

7.
Materials (Basel) ; 13(5)2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182765

RESUMEN

The tendencies of development within the field of engineering materials show a persistent trend towards the increase of strength and toughness. This pressure is particularly pronounced in the field of steels, since they compete with light alloys and composite materials in many applications. The improvement of steels' mechanical properties is sought to be achieved with the formation of exceptionally fine microstructures ranging well into the nanoscale, which enable a substantial increase in strength without being detrimental to toughness. The preferred route by which such a structure can be produced is not by applying the external plastic deformation, but by controlling the phase transformation from austenite into ferrite at low temperatures. The formation of bainite in steels at temperatures lower than about 200 °C enables the obtainment of the bulk nanostructured materials purely by heat treatment. This offers the advantages of high productivity, as well as few constraints in regard to the shape and size of the workpiece when compared with other methods for the production of nanostructured metals. The development of novel bainitic steels was based on high Si or high Al alloys. These groups of steels distinguish a very fine microstructure, comprised predominantly of bainitic ferrite plates, and a small fraction of retained austenite, as well as carbides. The very fine structure, within which the thickness of individual bainitic ferrite plates can be as thin as 5 nm, is obtained purely by quenching and natural ageing, without the use of isothermal transformation, which is characteristic for most bainitic steels. By virtue of their fine structure and low retained austenite content, this group of steels can develop a very high hardness of up to 65 HRC, while retaining a considerable level of impact toughness. The mechanical properties were evaluated by hardness measurements, impact testing of notched and unnotched specimens, as well as compression and tensile tests. Additionally, the steels' microstructures were characterised using light microscopy, field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). The obtained results confirmed that the strong refinement of the microstructural elements in the steels results in a combination of extremely high strength and very good toughness.

8.
Materials (Basel) ; 12(24)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31835366

RESUMEN

Gold nanoparticles (GNPs) have been investigated extensively as drug carriers in tumour immunotherapy in combination with photothermal therapy. For this purpose, GNPs should be stabilised in biological fluids. The goal of this study was to examine how stabilisation agents influence cytotoxicity and immune response in vitro. Spherical GNPs, 20 nm in size, were prepared by ultrasonic spray pyrolysis (USP). Three types of stabilising agents were used: sodium citrate (SC), polyvinyl-pyrrolidone (PVP), and poly-ethylene glycol (PEG). Pristine, non-stabilised GNPs were used as a control. The culture models were mouse L929 cells, B16F10 melanoma cells and human peripheral blood mononuclear cells (PBMNCs), obtained from healthy donors. Control SC- and PEG-GNPs were non-cytotoxic at concentrations (range 1-100 µg/mL), in contrast to PVP-GNPs, which were cytotoxic at higher concentrations. Control GNPs inhibited the production of IFN-ϒ slightly, and augmented the production of IL-10 by PHA-stimulated PBMNC cultures. PEG-GNPs inhibited the production of pro-inflammatory cytokines (IL-1, IL-6, IL-8, TNF-α) and Th1-related cytokines (IFN-ϒ and IL-12p70), and increased the production of Th2 cytokines (IL-4 and IL-5). SC-PEG inhibited the production of IL-8 and IL-17A. In contrast, PVP-GNPs stimulated the production of pro-inflammatory cytokines, Th1 cytokines, and IL-17A, but also IL-10. When uptake of GNPs by monocytes/macrophages in PBMNC cultures was analysed, the ingestion of PEG- GNPs was significantly lower compared to SC- and PVP-GNPs. In conclusion, stabilisation agents modulate biocompatibility and immune response significantly, so their adequate choice for preparation of GNPs is an important factor when considering the use of GNPs for application in vivo.

9.
Materials (Basel) ; 12(22)2019 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-31744228

RESUMEN

Colloidal gold nanoparticles (AuNPs) were prepared from two different liquid precursors (gold (III) acetate and gold (III) chloride), using the Ultrasonic Spray Pyrolysis (USP) process. The STEM characterisation showed that the AuNPs from gold chloride are spherical, with average diameters of 57.2 and 69.4 nm, while the AuNPs from gold acetate are ellipsoidal, with average diameters of 84.2 and 134.3 nm, according to Dynamic Light Scattering (DLS) measurements. UV/VIS spectroscopy revealed the maximum absorbance band of AuNPs between 532 and 560 nm, which indicates a stable state. Colloidal AuNPs were used as starting material and were mixed together with acrylic acid (AA) and acrylamide (Am) for the free radical polymerization of polyacrylate-AuNPs' composites, with the purpose of using them for temporary cavity fillings in the dental industry. SEM characterisation of polyacrylate-AuNPs' composites revealed a uniform distribution of AuNPs through the polymer matrix, revealing that the AuNPs remained stable during the polymerization process. The density measurements revealed that colloidal AuNPs increase the densities of the prepared polyacrylate-AuNPs' composites; the densities were increased up to 40% in comparison with the densities of the control samples. A compressive test showed that polyacrylate-AuNPs' composites exhibited lower compressive strength compared to the control samples, while their toughness increased. At 50% compression deformation some of the samples fracture, suggesting that incorporation of colloidal AuNPs do not improve their compressive strength, but increase their toughness significantly. This increased toughness is the measured property which makes prepared polyacrylate-AuNPs potentially useful in dentistry.

10.
Materials (Basel) ; 12(20)2019 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-31614767

RESUMEN

Iron core-gold shell (Fe@Au) nanoparticles are prominent for their magnetic and optical properties, which are especially beneficial for biomedical uses. Some experiments were carried out to produce Fe@Au particles with a one-step synthesis method, Ultrasonic Spray Pyrolysis (USP), which is able to produce the particles in a continuous process. The Fe@Au particles were produced with USP from a precursor solution with dissolved Iron (III) chloride and Gold (III) chloride, with Fe/Au concentration ratios ranging from 0.1 to 4. The resulting products are larger Fe oxide particles (mostly maghemite Fe2O3), with mean sizes of about 260-390 nm, decorated with Au nanoparticles (AuNPs) with mean sizes of around 24-67 nm. The Fe oxide core particles are mostly spherical in all of the experiments, while the AuNPs become increasingly irregular and more heavily agglomerated with lower Fe/Au concentration ratios in the precursor solution. The resulting particle morphology from these experiments is caused by surface chemistry and particle to solvent interactions during particle formation inside the USP system.

11.
PLoS One ; 9(5): e96584, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24802102

RESUMEN

Gold nanoparticles (GNPs) are claimed as outstanding biomedical tools for cancer diagnostics and photo-thermal therapy, but without enough evidence on their potentially adverse immunological effects. Using a model of human dendritic cells (DCs), we showed that 10 nm- and 50 nm-sized GNPs (GNP10 and GNP50, respectively) were internalized predominantly via dynamin-dependent mechanisms, and they both impaired LPS-induced maturation and allostimulatory capacity of DCs, although the effect of GNP10 was more prominent. However, GNP10 inhibited LPS-induced production of IL-12p70 by DCs, and potentiated their Th2 polarization capacity, while GNP50 promoted Th17 polarization. Such effects of GNP10 correlated with a stronger inhibition of LPS-induced changes in Ca2+ oscillations, their higher number per DC, and more frequent extra-endosomal localization, as judged by live-cell imaging, proton, and electron microscopy, respectively. Even when released from heat-killed necrotic HEp-2 cells, GNP10 inhibited the necrotic tumor cell-induced maturation and functions of DCs, potentiated their Th2/Th17 polarization capacity, and thus, impaired the DCs' capacity to induce T cell-mediated anti-tumor cytotoxicity in vitro. Therefore, GNP10 could potentially induce more adverse DC-mediated immunological effects, compared to GNP50.


Asunto(s)
Antineoplásicos/inmunología , Células Dendríticas/inmunología , Oro/inmunología , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Antineoplásicos/administración & dosificación , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/inmunología , Polaridad Celular/efectos de los fármacos , Polaridad Celular/inmunología , Células Cultivadas , Células Dendríticas/efectos de los fármacos , Oro/administración & dosificación , Humanos , Interleucina-12/inmunología , Lipopolisacáridos/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Células Th17/efectos de los fármacos , Células Th17/inmunología , Células Th2/efectos de los fármacos , Células Th2/inmunología
12.
J Biomed Nanotechnol ; 8(3): 528-38, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22764424

RESUMEN

We prepared 5 different fractions of nanoparticles from the gold scrap, by using a new technology, Ultrasonic Spray Pirolysis (USP). The aim of this study was to characterize the microstructure and cytotoxicity of the nanoparticles along with their immunomodulatory properties, using Concanavaline A (ConA)-treated rat splenocytes as a model of activated immune cells. Fractions 1 and 2, composed of pure gold nanoparticles, although non-cytotoxic, reduced cellular proliferation. Fraction 2, containing particles smaller in size and lesser agglomerated than fraction 1, up- and down-regulated the production of IL-2 and IL-10, respectively, by activated splenocytes. Fraction 3, containing nanoparticles composed of Au and up to 3 at.% Cu, was non-cytotoxic, but reduced IL-2 production and cell proliferation. Fractions 4 and 5, contaminated with alloying elements from the gold scrap, were cytotoxic. The extent of cytotoxicity and subsequent reduction of cytokine production, as well as the mode of cell death, depended on their composition. In conclusion, we showed that USP enables the synthesis of gold nanoparticles, which could be suitable for various biological applications, and that ConA-treated splenocytes represent a reliable model for fast and accurate evaluation of the immunotoxicological profiles of these particles. However, it is necessary to improve this technology and investigate further some of the immunomodulatory mechanisms using more specific immunological tests.


Asunto(s)
Oro/farmacología , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Nanopartículas/administración & dosificación , Nanopartículas/química , Bazo/efectos de los fármacos , Bazo/inmunología , Animales , Citocinas/inmunología , Gases/química , Oro/química , Oro/efectos de la radiación , Calor , Factores Inmunológicos/efectos de la radiación , Residuos Industriales , Masculino , Ensayo de Materiales , Nanopartículas/efectos de la radiación , Ratas , Sonicación
13.
Acta Biomater ; 6(1): 308-17, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19540942

RESUMEN

Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but their biomedical application is still limited. The aim of this work was to compare the microstructure, corrosion and cytotoxicity in vitro of a Cu-Al-Ni SMA. Rapidly solidified (RS) thin ribbons, manufactured via melt spinning, were used for the tests. The control alloy was a permanent mould casting of the same composition, but without shape memory effect. The results show that RS ribbons are significantly more resistant to corrosion compared with the control alloy, as judged by the lesser release of Cu and Ni into the conditioning medium. These results correlate with the finding that RS ribbons were not cytotoxic to L929 mouse fibroblasts and rat thymocytes. In addition, the RS ribbon conditioning medium inhibited cellular proliferation and IL-2 production by activated rat splenocytes to a much lesser extent. The inhibitory effects were almost completely abolished by conditioning the RS ribbons in culture medium for 4 weeks. Microstructural analysis showed that RS ribbons are martensitic, with boron particles as a minor phase. In contrast, the control Cu-Al-Ni alloy had a complex multiphase microstructure. Examination of the alloy surfaces after conditioning by energy dispersive X-ray and Auger electron spectroscopy showed the formation of Cu and Al oxide layers and confirmed that the metals in RS ribbons are less susceptible to oxidation and corrosion compared with the control alloy. In conclusion, these results suggest that rapid solidification significantly improves the corrosion stability and biocompatibility in vitro of Cu-Al-Ni SMA ribbons.


Asunto(s)
Aleaciones/química , Aluminio/química , Materiales Biocompatibles/química , Cobre/química , Aleaciones Dentales/química , Níquel/química , Animales , Apoptosis , Supervivencia Celular , Corrosión , Masculino , Ratones , Oxígeno/química , Ratas , Bazo/citología , Propiedades de Superficie , Sales de Tetrazolio/química , Tiazoles/química , Timo/citología
14.
J Biomater Appl ; 25(3): 269-86, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20008088

RESUMEN

Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but little is known about their biocompatibility. The aim of this work was to study the response of rat peritoneal macrophages (PMØ) to a Cu-Al-Ni SMA in vitro, by measuring the functional activity of mitochondria, necrosis, apoptosis, and production of proinflammatory cytokines. Rapidly solidified (RS) thin ribbons were used for the tests. The control alloy was a permanent mold casting of the same composition, but without the shape memory effect. Our results showed that the control alloy was severely cytotoxic, whereas RS ribbons induced neither necrosis nor apoptosis of PMØ. These findings correlated with the data that RS ribbons are significantly more resistant to corrosion compared to the control alloy, as judged by the lesser release of Cu and Ni in the conditioning medium. However, the ribbons generated intracellular reactive oxygen species and upregulated the production of IL-6 by PMØ. These effects were almost completely abolished by conditioning the RS ribbons for 5 weeks. In conclusion, RS significantly improves the corrosion stability and biocompatibility of Cu-Al-Ni SMA. The biocompatibility of this functional material could be additionally enhanced by conditioning the ribbons in cell culture medium.


Asunto(s)
Aleaciones/metabolismo , Aluminio/metabolismo , Materiales Biocompatibles/metabolismo , Cobre/metabolismo , Macrófagos/citología , Níquel/metabolismo , Aleaciones/química , Aluminio/química , Aluminio/inmunología , Animales , Apoptosis , Materiales Biocompatibles/química , Supervivencia Celular , Células Cultivadas , Cobre/química , Cobre/inmunología , Citocinas/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Níquel/química , Níquel/inmunología , Peritoneo/citología , Ratas , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...