Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(10): e202318155, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38109458

RESUMEN

Real-time monitoring of hydroxyl radical (⋅OH) generation is crucial for both the efficacy and safety of chemodynamic therapy (CDT). Although ⋅OH probe-integrated CDT agents can track ⋅OH production by themselves, they often require complicated synthetic procedures and suffer from self-consumption of ⋅OH. Here, we report the facile fabrication of a self-monitored chemodynamic agent (denoted as Fc-CD-AuNCs) by incorporating ferrocene (Fc) into ß-cyclodextrin (CD)-functionalized gold nanoclusters (AuNCs) via host-guest molecular recognition. The water-soluble CD served not only as a capping agent to protect AuNCs but also as a macrocyclic host to encapsulate and solubilize hydrophobic Fc guest with high Fenton reactivity for in vivo CDT applications. Importantly, the encapsulated Fc inside CD possessed strong electron-donating ability to effectively quench the second near-infrared (NIR-II) fluorescence of AuNCs through photoinduced electron transfer. After internalization of Fc-CD-AuNCs by cancer cells, Fenton reaction between redox-active Fc quencher and endogenous hydrogen peroxide (H2 O2 ) caused Fc oxidation and subsequent NIR-II fluorescence recovery, which was accompanied by the formation of cytotoxic ⋅OH and therefore allowed Fc-CD-AuNCs to in situ self-report ⋅OH generation without undesired ⋅OH consumption. Such a NIR-II fluorescence-monitored CDT enabled the use of renal-clearable Fc-CD-AuNCs for efficient tumor growth inhibition with minimal side effects in vivo.


Asunto(s)
Compuestos Ferrosos , Nanopartículas , Neoplasias , Humanos , Nanomedicina , Metalocenos , Fluorescencia , Oxidación-Reducción , Línea Celular Tumoral , Peróxido de Hidrógeno/química , Nanopartículas/química , Microambiente Tumoral
2.
Angew Chem Int Ed Engl ; 62(22): e202302255, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36959091

RESUMEN

Ferrous iron (Fe2+ ) has more potent hydroxyl radical (⋅OH)-generating ability than other Fenton-type metal ions, making Fe-based nanomaterials attractive for chemodynamic therapy (CDT). However, because Fe2+ can be converted by ferritin heavy chain (FHC) to nontoxic ferric form and then sequestered in ferritin, therapeutic outcomes of Fe-mediated CDT agents are still far from satisfactory. Here we report the synthesis of siRNA-embedded Fe0 nanoparticles (Fe0 -siRNA NPs) for self-reinforcing CDT via FHC downregulation. Upon internalization by cancer cells, pH-responsive Fe0 -siRNA NPs are degraded to release Fe2+ and FHC siRNA in acidic endo/lysosomes with the aid of oxygen (O2 ). The accompanied O2 depletion causes an intracellular pH decrease, which further promotes the degradation of Fe0 -siRNA NPs. In addition to initiating chemodynamic process, Fe2+ -catalyzed ⋅OH generation facilitates endo/lysosomal escape of siRNA by disrupting the membranes, enabling FHC downregulation-enhanced CDT.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Hierro/metabolismo , Apoferritinas/metabolismo , Apoferritinas/uso terapéutico , ARN Interferente Pequeño/uso terapéutico , Regulación hacia Abajo , Radical Hidroxilo/metabolismo , Nanopartículas/uso terapéutico , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Peróxido de Hidrógeno/metabolismo
3.
Angew Chem Int Ed Engl ; 62(12): e202218407, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36708200

RESUMEN

Lipid peroxidation (LPO) is one of the most damaging processes in chemodynamic therapy (CDT). Although it is well known that polyunsaturated fatty acids (PUFAs) are much more susceptible than saturated or monounsaturated ones to LPO, there is no study exploring the effect of cell membrane unsaturation degree on CDT. Here, we report a self-reinforcing CDT agent (denoted as OA@Fe-SAC@EM NPs), consisting of oleanolic acid (OA)-loaded iron single-atom catalyst (Fe-SAC)-embedded hollow carbon nanospheres encapsulated by an erythrocyte membrane (EM), which promotes LPO to improve chemodynamic efficacy via modulating the degree of membrane unsaturation. Upon uptake of OA@Fe-SAC@EM NPs by cancer cells, Fe-SAC-catalyzed conversion of endogenous hydrogen peroxide into hydroxyl radicals, in addition to initiating the chemodynamic therapeutic process, causes the dissociation of the EM shell and the ensuing release of OA that can enrich cellular membranes with PUFAs, enabling LPO amplification-enhanced CDT.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Peroxidación de Lípido , Membrana Celular/metabolismo , Radical Hidroxilo/metabolismo , Ácidos Grasos Insaturados/metabolismo , Peróxido de Hidrógeno/metabolismo , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Microambiente Tumoral
4.
ACS Nano ; 17(3): 3064-3076, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36646112

RESUMEN

As a rising generation of nanozymes, single atom enzymes show significant promise for cancer therapy, due to their maximum atom utilization efficiency and well-defined electronic structures. However, it remains a tremendous challenge to precisely produce a heteroatom-doped single atom enzyme with an expected coordination environment. Herein, we develop an anion exchange strategy for precisely controlled production of an edge-rich sulfur (S)- and nitrogen (N)-decorated nickel single atom enzyme (S-N/Ni PSAE). In particular, sulfurized S-N/Ni PSAE exhibits stronger peroxidase-like and glutathione oxidase-like activities than the nitrogen-monodoped nickel single atom enzyme, which is attributed to the vacancies and defective sites of sulfurized nitrogen atoms. Moreover, both in vitro and in vivo results demonstrate that, compared with nitrogen-monodoped N/Ni PSAE, sulfurized S-N/Ni PSAE more effectively triggers ferroptosis of tumor cells via inactivating glutathione peroxidase 4 and inducing lipid peroxidation. This study highlights the enhanced catalytic efficacy of a polynary heteroatom-doped single atom enzyme for ferroptosis-based cancer therapy.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Níquel , Peroxidasa , Nitrógeno , Neoplasias/tratamiento farmacológico
5.
Angew Chem Int Ed Engl ; 60(27): 15006-15012, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33871140

RESUMEN

Singlet oxygen (1 O2 ) has a potent anticancer effect, but photosensitized generation of 1 O2 is inhibited by tumor hypoxia and limited light penetration depth. Despite the potential of chemodynamic therapy (CDT) to circumvent these issues by exploration of 1 O2 -producing catalysts, engineering efficient CDT agents is still a formidable challenge since most catalysts require specific pH to function and become inactivated upon chelation by glutathione (GSH). Herein, we present a catalytic microenvironment-tailored nanoreactor (CMTN), constructed by encapsulating MoO42- catalyst and alkaline sodium carbonate within liposomes, which offers a favorable pH condition for MoO42- -catalyzed generation of 1 O2 from H2 O2 and protects MoO42- from GSH chelation owing to the impermeability of liposomal lipid membrane to ions and GSH. H2 O2 and 1 O2 can freely cross the liposomal membrane, allowing CMTN with a built-in NIR-II ratiometric fluorescent 1 O2 sensor to achieve monitored tumor CDT.


Asunto(s)
Fluorescencia , Molibdeno/química , Nanopartículas/química , Fotoquimioterapia , Oxígeno Singlete/química , Catálisis , Humanos , Rayos Infrarrojos , Hipoxia Tumoral , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA