Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6600, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504117

RESUMEN

Grape breeding programs are mostly focused on developing new varieties with high production volume, sugar contents, and phenolic compound diversity combined with resistance and tolerance to the main pathogens under culture and adverse environmental conditions. The 'Niagara' variety (Vitis labrusca × Vitis vinifera) is one of the most widely produced and commercialized table grapes in Brazil. In this work, we selected three Niagara somatic variants with contrasting berry phenotypes and performed morphological and transcriptomic analyses of their berries. Histological sections of the berries were also performed to understand anatomical and chemical composition differences of the berry skin between the genotypes. An RNA-Seq pipeline was implemented, followed by global coexpression network modeling. 'Niagara Steck', an intensified russet mutant with the most extreme phenotype, showed the largest difference in expression and showed selection of coexpressed network modules involved in the development of its russet-like characteristics. Enrichment analysis of differently expressed genes and hub network modules revealed differences in transcription regulation, auxin signaling and cell wall and plasmatic membrane biogenesis. Cutin- and suberin-related genes were also differently expressed, supporting the anatomical differences observed with microscopy.


Asunto(s)
Vitis , Vitis/metabolismo , Fitomejoramiento , Perfilación de la Expresión Génica , Frutas/metabolismo , Brasil
2.
PLoS One ; 19(1): e0296551, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38165869

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0258679.].

3.
Front Plant Sci ; 14: 1303417, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148869

RESUMEN

Tropical forage grasses, particularly those belonging to the Urochloa genus, play a crucial role in cattle production and serve as the main food source for animals in tropical and subtropical regions. The majority of these species are apomictic and tetraploid, highlighting the significance of U. ruziziensis, a sexual diploid species that can be tetraploidized for use in interspecific crosses with apomictic species. As a means to support breeding programs, our study investigates the feasibility of genome-wide family prediction in U. ruziziensis families to predict agronomic traits. Fifty half-sibling families were assessed for green matter yield, dry matter yield, regrowth capacity, leaf dry matter, and stem dry matter across different clippings established in contrasting seasons with varying available water capacity. Genotyping was performed using a genotyping-by-sequencing approach based on DNA samples from family pools. In addition to conventional genomic prediction methods, machine learning and feature selection algorithms were employed to reduce the necessary number of markers for prediction and enhance predictive accuracy across phenotypes. To explore the regulation of agronomic traits, our study evaluated the significance of selected markers for prediction using a tree-based approach, potentially linking these regions to quantitative trait loci (QTLs). In a multiomic approach, genes from the species transcriptome were mapped and correlated to those markers. A gene coexpression network was modeled with gene expression estimates from a diverse set of U. ruziziensis genotypes, enabling a comprehensive investigation of molecular mechanisms associated with these regions. The heritabilities of the evaluated traits ranged from 0.44 to 0.92. A total of 28,106 filtered SNPs were used to predict phenotypic measurements, achieving a mean predictive ability of 0.762. By employing feature selection techniques, we could reduce the dimensionality of SNP datasets, revealing potential genotype-phenotype associations. The functional annotation of genes near these markers revealed associations with auxin transport and biosynthesis of lignin, flavonol, and folic acid. Further exploration with the gene coexpression network uncovered associations with DNA metabolism, stress response, and circadian rhythm. These genes and regions represent important targets for expanding our understanding of the metabolic regulation of agronomic traits and offer valuable insights applicable to species breeding. Our work represents an innovative contribution to molecular breeding techniques for tropical forages, presenting a viable marker-assisted breeding approach and identifying target regions for future molecular studies on these agronomic traits.

4.
Theor Appl Genet ; 136(11): 238, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919432

RESUMEN

KEY MESSAGE: We present the highest-density genetic map for the hexaploid Urochloa humidicola. SNP markers expose genetic organization, reproduction, and species origin, aiding polyploid and tropical forage research. Tropical forage grasses are an important food source for animal feeding, with Urochloa humidicola, also known as Koronivia grass, being one of the main pasture grasses for poorly drained soils in the tropics. However, genetic and genomic resources for this species are lacking due to its genomic complexity, including high heterozygosity, evidence of segmental allopolyploidy, and reproduction by apomixis. These complexities hinder the application of marker-assisted selection (MAS) in breeding programs. Here, we developed the highest-density linkage map currently available for the hexaploid tropical forage grass U. humidicola. This map was constructed using a biparental F1 population generated from a cross between the female parent H031 (CIAT 26146), the only known sexual genotype for the species, and the apomictic male parent H016 (BRS cv. Tupi). The linkage analysis included 4873 single nucleotide polymorphism (SNP) markers with allele dosage information. It allowed mapping of the ASGR locus and apospory phenotype to linkage group 3, in a region syntenic with chromosome 3 of Urochloa ruziziensis and chromosome 1 of Setaria italica. We also identified hexaploid haplotypes for all individuals, assessed the meiotic configuration, and estimated the level of preferential pairing in parents during the meiotic process, which revealed the autopolyploid origin of sexual H031 in contrast to apomictic H016, which presented allopolyploid behavior in preferential pairing analysis. These results provide new information regarding the genetic organization, mode of reproduction, and allopolyploid origin of U. humidicola, potential SNPs markers associated with apomixis for MAS and resources for research on polyploids and tropical forage grasses.


Asunto(s)
Apomixis , Humanos , Femenino , Masculino , Apomixis/genética , Fitomejoramiento , Poaceae/genética , Poliploidía , Genómica
5.
Sci Rep ; 13(1): 13455, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596307

RESUMEN

Anthracnose, caused by the hemibiotrophic fungus Colletotrichum lindemuthianum, is a damaging disease of common beans that can drastically reduce crop yield. The most effective strategy to manage anthracnose is the use of resistant cultivars. There are many resistance loci that have been identified, mapped and associated with markers in common bean chromosomes. The Leucine-rich repeat kinase receptor protein (LRR-RLK) family is a diverse group of transmembrane receptors, which potentially recognizes pathogen-associated molecular patterns and activates an immune response. In this study, we performed in silico analyses to identify, classify, and characterize common bean LRR-RLKs, also evaluating their expression profile in response to the infection by C. lindemuthianum. By analyzing the entire genome of Phaseolus vulgaris, we could identify and classify 230 LRR-RLKs into 15 different subfamilies. The analyses of gene structures, conserved domains and motifs suggest that LRR-RLKs from the same subfamily are consistent in their exon/intron organization and composition. LRR-RLK genes were found along the 11 chromosomes of the species, including regions of proximity with anthracnose resistance markers. By investigating the duplication events within the LRR-RLK family, we associated the importance of such a family with an expansion resulting from a strong stabilizing selection. Promoter analysis was also performed, highlighting cis-elements associated with the plant response to biotic stress. With regard to the expression pattern of LRR-RLKs in response to the infection by C. lindemuthianum, we could point out several differentially expressed genes in this subfamily, which were associated to specific molecular patterns of LRR-RLKs. Our work provides a broad analysis of the LRR-RLK family in P. vulgaris, allowing an in-depth structural and functional characterization of genes and proteins of this family. From specific expression patterns related to anthracnose response, we could infer a direct participation of RLK-LRR genes in the mechanisms of resistance to anthracnose, highlighting important subfamilies for further investigations.


Asunto(s)
Phaseolus , Phaseolus/genética , Proteínas Tirosina Quinasas , Exones , Intrones , Proteínas Repetidas Ricas en Leucina
6.
Front Plant Sci ; 14: 1068202, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36824205

RESUMEN

The protein kinase (PK) superfamily constitutes one of the largest and most conserved protein families in eukaryotic genomes, comprising core components of signaling pathways in cell regulation. Despite its remarkable relevance, only a few kinase families have been studied in Hevea brasiliensis. A comprehensive characterization and global expression analysis of the PK superfamily, however, is currently lacking. In this study, with the aim of providing novel inferences about the mechanisms associated with the stress response developed by PKs and retained throughout evolution, we identified and characterized the entire set of PKs, also known as the kinome, present in the Hevea genome. Different RNA-sequencing datasets were employed to identify tissue-specific expression patterns and potential correspondences between different rubber tree genotypes. In addition, coexpression networks under several abiotic stress conditions, such as cold, drought and latex overexploitation, were employed to elucidate associations between families and tissues/stresses. A total of 1,809 PK genes were identified using the current reference genome assembly at the scaffold level, and 1,379 PK genes were identified using the latest chromosome-level assembly and combined into a single set of 2,842 PKs. These proteins were further classified into 20 different groups and 122 families, exhibiting high compositional similarities among family members and with two phylogenetically close species Manihot esculenta and Ricinus communis. Through the joint investigation of tandemly duplicated kinases, transposable elements, gene expression patterns, and coexpression events, we provided insights into the understanding of the cell regulation mechanisms in response to several conditions, which can often lead to a significant reduction in rubber yield.

7.
Gene ; 855: 147127, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563714

RESUMEN

The protein kinase (PK) superfamily is one of the largest superfamilies in plants and is the core regulator of cellular signaling. Even considering this substantial importance, the kinome of common bean (Phaseolus vulgaris) has not been profiled yet. Here, we identified and characterised the complete set of kinases of common bean, performing an in-depth investigation with phylogenetic analyses and measurements of gene distribution, structural organization, protein properties, and expression patterns over a large set of RNA-Sequencing data. Being composed of 1,203 PKs distributed across all P. vulgaris chromosomes, this set represents 3.25% of all predicted proteins for the species. These PKs could be classified into 20 groups and 119 subfamilies, with a more pronounced abundance of subfamilies belonging to the receptor-like kinase (RLK)-Pelle group. In addition to provide a vast and rich reservoir of data, our study supplied insights into the compositional similarities between PK subfamilies, their evolutionary divergences, highly variable functional profile, structural diversity, and expression patterns, modeled with coexpression networks for investigating putative interactions associated with stress response.


Asunto(s)
Phaseolus , Phaseolus/genética , Phaseolus/metabolismo , Filogenia , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Familia de Multigenes , Plantas/genética , Proteínas de Plantas/metabolismo
8.
Microb Genom ; 8(10)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36250787

RESUMEN

Whole-genome sequence analyses have significantly contributed to the understanding of virulence and evolution of the Mycobacterium tuberculosis complex (MTBC), the causative pathogens of tuberculosis. Most MTBC evolutionary studies are focused on single nucleotide polymorphisms and deletions, but rare studies have evaluated gene content, whereas none has comprehensively evaluated pseudogenes. Accordingly, we describe an extensive study focused on quantifying and predicting possible functions of MTBC and Mycobacterium canettii pseudogenes. Using NCBI's PGAP-detected pseudogenes, we analysed 25 837 pseudogenes from 158 MTBC and M. canetii strains and combined transcriptomics and proteomics of M. tuberculosis H37Rv to gain insights about pseudogenes' expression. Our results indicate significant variability concerning rate and conservancy of in silico predicted pseudogenes among different ecotypes and lineages of tuberculous mycobacteria and pseudogenization of important virulence factors and genes of the metabolism and antimicrobial resistance/tolerance. We show that in silico predicted pseudogenes contribute considerably to MTBC genetic diversity at the population level. Moreover, the transcription machinery of M. tuberculosis can fully transcribe most pseudogenes, indicating intact promoters and recent pseudogene evolutionary emergence. Proteomics of M. tuberculosis and close evaluation of mutational lesions driving pseudogenization suggest that few in silico predicted pseudogenes are likely capable of neofunctionalization, nonsense mutation reversal, or phase variation, contradicting the classical definition of pseudogenes. Such findings indicate that genome annotation should be accompanied by proteomics and protein function assays to improve its accuracy. While indels and insertion sequences are the main drivers of the observed mutational lesions in these species, population bottlenecks and genetic drift are likely the evolutionary processes acting on pseudogenes' emergence over time. Our findings unveil a new perspective on MTBC's evolution and genetic diversity.


Asunto(s)
Mycobacterium tuberculosis , Seudogenes , Antiinfecciosos , Codón sin Sentido , Elementos Transponibles de ADN , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Seudogenes/genética , Factores de Virulencia/genética , Farmacorresistencia Bacteriana/genética
9.
Sci Rep ; 12(1): 18023, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289298

RESUMEN

Rubber tree (Hevea brasiliensis) is the main feedstock for commercial rubber; however, its long vegetative cycle has hindered the development of more productive varieties via breeding programs. With the availability of H. brasiliensis genomic data, several linkage maps with associated quantitative trait loci have been constructed and suggested as a tool for marker-assisted selection. Nonetheless, novel genomic strategies are still needed, and genomic selection (GS) may facilitate rubber tree breeding programs aimed at reducing the required cycles for performance assessment. Even though such a methodology has already been shown to be a promising tool for rubber tree breeding, increased model predictive capabilities and practical application are still needed. Here, we developed a novel machine learning-based approach for predicting rubber tree stem circumference based on molecular markers. Through a divide-and-conquer strategy, we propose a neural network prediction system with two stages: (1) subpopulation prediction and (2) phenotype estimation. This approach yielded higher accuracies than traditional statistical models in a single-environment scenario. By delivering large accuracy improvements, our methodology represents a powerful tool for use in Hevea GS strategies. Therefore, the incorporation of machine learning techniques into rubber tree GS represents an opportunity to build more robust models and optimize Hevea breeding programs.


Asunto(s)
Hevea , Hevea/genética , Hevea/metabolismo , Goma/metabolismo , Fitomejoramiento , Genómica , Aprendizaje Automático
10.
Sci Rep ; 12(1): 12499, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864135

RESUMEN

Poaceae, among the most abundant plant families, includes many economically important polyploid species, such as forage grasses and sugarcane (Saccharum spp.). These species have elevated genomic complexities and limited genetic resources, hindering the application of marker-assisted selection strategies. Currently, the most promising approach for increasing genetic gains in plant breeding is genomic selection. However, due to the polyploidy nature of these polyploid species, more accurate models for incorporating genomic selection into breeding schemes are needed. This study aims to develop a machine learning method by using a joint learning approach to predict complex traits from genotypic data. Biparental populations of sugarcane and two species of forage grasses (Urochloa decumbens, Megathyrsus maximus) were genotyped, and several quantitative traits were measured. High-quality markers were used to predict several traits in different cross-validation scenarios. By combining classification and regression strategies, we developed a predictive system with promising results. Compared with traditional genomic prediction methods, the proposed strategy achieved accuracy improvements exceeding 50%. Our results suggest that the developed methodology could be implemented in breeding programs, helping reduce breeding cycles and increase genetic gains.


Asunto(s)
Poaceae , Saccharum , Genómica/métodos , Fenotipo , Fitomejoramiento , Poaceae/genética , Poliploidía , Saccharum/genética
11.
Front Plant Sci ; 13: 923069, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845637

RESUMEN

Orphan genes (OGs) are protein-coding genes that are restricted to particular clades or species and lack homology with genes from other organisms, making their biological functions difficult to predict. OGs can rapidly originate and become functional; consequently, they may support rapid adaptation to environmental changes. Extensive spread of mobile elements and whole-genome duplication occurred in the Saccharum group, which may have contributed to the origin and diversification of OGs in the sugarcane genome. Here, we identified and characterized OGs in sugarcane, examined their expression profiles across tissues and genotypes, and investigated their regulation under varying conditions. We identified 319 OGs in the Saccharum spontaneum genome without detected homology to protein-coding genes in green plants, except those belonging to Saccharinae. Transcriptomic analysis revealed 288 sugarcane OGs with detectable expression levels in at least one tissue or genotype. We observed similar expression patterns of OGs in sugarcane genotypes originating from the closest geographical locations. We also observed tissue-specific expression of some OGs, possibly indicating a complex regulatory process for maintaining diverse functional activity of these genes across sugarcane tissues and genotypes. Sixty-six OGs were differentially expressed under stress conditions, especially cold and osmotic stresses. Gene co-expression network and functional enrichment analyses suggested that sugarcane OGs are involved in several biological mechanisms, including stimulus response and defence mechanisms. These findings provide a valuable genomic resource for sugarcane researchers, especially those interested in selecting stress-responsive genes.

12.
Front Genet ; 13: 807243, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281818

RESUMEN

Trichoderma harzianum, whose gene expression is tightly controlled by the transcription factors (TFs) XYR1 and CRE1, is a potential candidate for hydrolytic enzyme production. Here, we performed a network analysis of T. harzianum IOC-3844 and T. harzianum CBMAI-0179 to explore how the regulation of these TFs varies between these strains. In addition, we explored the evolutionary relationships of XYR1 and CRE1 protein sequences among Trichoderma spp. The results of the T. harzianum strains were compared with those of Trichoderma atroviride CBMAI-0020, a mycoparasitic species. Although transcripts encoding carbohydrate-active enzymes (CAZymes), TFs, transporters, and proteins with unknown functions were coexpressed with cre1 or xyr1, other proteins indirectly related to cellulose degradation were identified. The enriched GO terms describing the transcripts of these groups differed across all strains, and several metabolic pathways with high similarity between both regulators but strain-specific differences were identified. In addition, the CRE1 and XYR1 subnetworks presented different topology profiles in each strain, likely indicating differences in the influences of these regulators according to the fungi. The hubs of the cre1 and xyr1 groups included transcripts not yet characterized or described as being related to cellulose degradation. The first-neighbor analyses confirmed the results of the profile of the coexpressed transcripts in cre1 and xyr1. The analyses of the shortest paths revealed that CAZymes upregulated under cellulose degradation conditions are most closely related to both regulators, and new targets between such signaling pathways were discovered. Although the evaluated T. harzianum strains are phylogenetically close and their amino acid sequences related to XYR1 and CRE1 are very similar, the set of transcripts related to xyr1 and cre1 differed, suggesting that each T. harzianum strain used a specific regulation strategy for cellulose degradation. More interestingly, our findings may suggest that XYR1 and CRE1 indirectly regulate genes encoding proteins related to cellulose degradation in the evaluated T. harzianum strains. An improved understanding of the basic biology of fungi during the cellulose degradation process can contribute to the use of their enzymes in several biotechnological applications and pave the way for further studies on the differences across strains of the same species.

13.
Microb Genomics, v. 8, n. 10, 000876, out. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4569

RESUMEN

Whole-genome sequence analyses have significantly contributed to the understanding of virulence and evolution of the Mycobacterium tuberculosis complex (MTBC), the causative pathogens of tuberculosis. Most MTBC evolutionary studies are focused on single nucleotide polymorphisms and deletions, but rare studies have evaluated gene content, whereas none has comprehensively evaluated pseudogenes. Accordingly, we describe an extensive study focused on quantifying and predicting possible functions of MTBC and Mycobacterium canettii pseudogenes. Using NCBI’s PGAP-detected pseudogenes, we analysed 25 837 pseudogenes from 158 MTBC and M. canetii strains and combined transcriptomics and proteomics of M. tuberculosis H37Rv to gain insights about pseudogenes' expression. Our results indicate significant variability concerning rate and conservancy of in silico predicted pseudogenes among different ecotypes and lineages of tuberculous mycobacteria and pseudogenization of important virulence factors and genes of the metabolism and antimicrobial resistance/tolerance. We show that in silico predicted pseudogenes contribute considerably to MTBC genetic diversity at the population level. Moreover, the transcription machinery of M. tuberculosis can fully transcribe most pseudogenes, indicating intact promoters and recent pseudogene evolutionary emergence. Proteomics of M. tuberculosis and close evaluation of mutational lesions driving pseudogenization suggest that few in silico predicted pseudogenes are likely capable of neofunctionalization, nonsense mutation reversal, or phase variation, contradicting the classical definition of pseudogenes. Such findings indicate that genome annotation should be accompanied by proteomics and protein function assays to improve its accuracy. While indels and insertion sequences are the main drivers of the observed mutational lesions in these species, population bottlenecks and genetic drift are likely the evolutionary processes acting on pseudogenes' emergence over time. Our findings unveil a new perspective on MTBC’s evolution and genetic diversity.

14.
Front Plant Sci ; 12: 737919, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745171

RESUMEN

Artificial hybridization plays a fundamental role in plant breeding programs since it generates new genotypic combinations that can result in desirable phenotypes. Depending on the species and mode of reproduction, controlled crosses may be challenging, and contaminating individuals can be introduced accidentally. In this context, the identification of such contaminants is important to avoid compromising further selection cycles, as well as genetic and genomic studies. The main objective of this work was to propose an automated multivariate methodology for the detection and classification of putative contaminants, including apomictic clones (ACs), self-fertilized individuals, half-siblings (HSs), and full contaminants (FCs), in biparental polyploid progenies of tropical forage grasses. We established a pipeline to identify contaminants in genotyping-by-sequencing (GBS) data encoded as allele dosages of single nucleotide polymorphism (SNP) markers by integrating principal component analysis (PCA), genotypic analysis (GA) measures based on Mendelian segregation, and clustering analysis (CA). The combination of these methods allowed for the correct identification of all contaminants in all simulated progenies and the detection of putative contaminants in three real progenies of tropical forage grasses, providing an easy and promising methodology for the identification of contaminants in biparental progenies of tetraploid and hexaploid species. The proposed pipeline was made available through the polyCID Shiny app and can be easily coupled with traditional genetic approaches, such as linkage map construction, thereby increasing the efficiency of breeding programs.

15.
3 Biotech ; 11(11): 475, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34777932

RESUMEN

Fungi are key players in biotechnological applications. Although several studies focusing on fungal diversity and genetics have been performed, many details of fungal biology remain unknown, including how cellulolytic enzymes are modulated within these organisms to allow changes in main plant cell wall compounds, cellulose and hemicellulose, and subsequent biomass conversion. With the advent and consolidation of DNA/RNA sequencing technology, different types of information can be generated at the genomic, structural and functional levels, including the gene expression profiles and regulatory mechanisms of these organisms, during degradation-induced conditions. This increase in data generation made rapid computational development necessary to deal with the large amounts of data generated. In this context, the origination of bioinformatics, a hybrid science integrating biological data with various techniques for information storage, distribution and analysis, was a fundamental step toward the current state-of-the-art in the postgenomic era. The possibility of integrating biological big data has facilitated exciting discoveries, including identifying novel mechanisms and more efficient enzymes, increasing yields, reducing costs and expanding opportunities in the bioprocess field. In this review, we summarize the current status and trends of the integration of different types of biological data through bioinformatics approaches for biological data analysis and enzyme selection.

16.
PLoS One ; 16(10): e0258679, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34695146

RESUMEN

Plant stomata are essential structures (pores) that control the exchange of gases between plant leaves and the atmosphere, and also they influence plant adaptation to climate through photosynthesis and transpiration stream. Many works in literature aim for a better understanding of these structures and their role in the evolution process and the behavior of plants. Although stomata studies in dicots species have advanced considerably in the past years, even there is not much knowledge about the stomata of cereal grasses. Due to the high morphological variation of stomata traits intra- and inter-species, detecting and classifying stomata automatically becomes challenging. For this reason, in this work, we propose a new system for automatic stomata classification and detection in microscope images for maize cultivars based on transfer learning strategy of different deep convolution neural netwoks (DCNN). Our performed experiments show that our system achieves an approximated accuracy of 97.1% in identifying stomata regions using classifiers based on deep learning features, which figures out as a nearly perfect classification system. As the stomata are responsible for several plant functionalities, this work represents an important advance for maize research, providing an accurate system in replacing the current manual task of categorizing these pores on microscope images. Furthermore, this system can also be a reference for studies using images from different cereal grasses.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos , Fotosíntesis , Fenómenos Fisiológicos de las Plantas , Estomas de Plantas/clasificación , Transpiración de Plantas , Zea mays/fisiología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Estomas de Plantas/anatomía & histología , Estomas de Plantas/fisiología , Zea mays/anatomía & histología
17.
Sci Rep ; 11(1): 15730, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344928

RESUMEN

Sugarcane yellow leaf (SCYL), caused by the sugarcane yellow leaf virus (SCYLV) is a major disease affecting sugarcane, a leading sugar and energy crop. Despite damages caused by SCYLV, the genetic base of resistance to this virus remains largely unknown. Several methodologies have arisen to identify molecular markers associated with SCYLV resistance, which are crucial for marker-assisted selection and understanding response mechanisms to this virus. We investigated the genetic base of SCYLV resistance using dominant and codominant markers and genotypes of interest for sugarcane breeding. A sugarcane panel inoculated with SCYLV was analyzed for SCYL symptoms, and viral titer was estimated by RT-qPCR. This panel was genotyped with 662 dominant markers and 70,888 SNPs and indels with allele proportion information. We used polyploid-adapted genome-wide association analyses and machine-learning algorithms coupled with feature selection methods to establish marker-trait associations. While each approach identified unique marker sets associated with phenotypes, convergences were observed between them and demonstrated their complementarity. Lastly, we annotated these markers, identifying genes encoding emblematic participants in virus resistance mechanisms and previously unreported candidates involved in viral responses. Our approach could accelerate sugarcane breeding targeting SCYLV resistance and facilitate studies on biological processes leading to this trait.


Asunto(s)
Resistencia a la Enfermedad/genética , Genoma de Planta , Estudio de Asociación del Genoma Completo , Luteoviridae/fisiología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Saccharum/genética , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas , Genotipo , Filogenia , Fitomejoramiento , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/virología , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo , Saccharum/crecimiento & desarrollo , Saccharum/virología
18.
Front Plant Sci ; 12: 668623, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305969

RESUMEN

The protein kinase (PK) superfamily is one of the largest superfamilies in plants and the core regulator of cellular signaling. Despite this substantial importance, the kinomes of sugarcane and sorghum have not been profiled. Here, we identified and profiled the complete kinomes of the polyploid Saccharum spontaneum (Ssp) and Sorghum bicolor (Sbi), a close diploid relative. The Sbi kinome was composed of 1,210 PKs; for Ssp, we identified 2,919 PKs when disregarding duplications and allelic copies, and these were related to 1,345 representative gene models. The Ssp and Sbi PKs were grouped into 20 groups and 120 subfamilies and exhibited high compositional similarities and evolutionary divergences. By utilizing the collinearity between the species, this study offers insights into Sbi and Ssp speciation, PK differentiation and selection. We assessed the PK subfamily expression profiles via RNA-Seq and identified significant similarities between Sbi and Ssp. Moreover, coexpression networks allowed inference of a core structure of kinase interactions with specific key elements. This study provides the first categorization of the allelic specificity of a kinome and offers a wide reservoir of molecular and genetic information, thereby enhancing the understanding of Sbi and Ssp PK evolutionary history.

19.
Sci Total Environ ; 789: 147945, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34051496

RESUMEN

Soil microbial communities act on important environmental processes, being sensitive to the application of wastes, mainly those potential contaminants, such as tannery sludge. Due to the microbiome complexity, graph-theoretical approaches have been applied to represent model microbial communities interactions and identify important taxa, mainly in contaminated soils. Herein, we performed network and statistical analyses into microbial 16S rRNA gene sequencing data from soil samples with the application of different levels of composted tannery sludge (CTS) to assess the most connected nodes and the nodes that act as bridges to identify key microbes within each community. The network analysis revealed hubs belonging to Proteobacteria in soil with lower CTS rates, while active degraders of recalcitrant and pollutant chemical hubs belonging to Proteobacteria and Actinobacteria were found in soils under the highest CTS rates. The majority of classified connectors belonged to Actinobacteria, but similarly to hubs taxa, they shifted from metabolic functional profile to taxa with abilities to degrade toxic compounds, revealing a soil perturbation with the CTS application on community organization, which also impacted the community modularity. Members of Actinobacteria and Acidobacteria were identified as both hub and connector suggesting their role as keystone groups. Thus, these results offered us interesting insights about crucial taxa, their response to environmental alterations, and possible implications for the ecosystem.


Asunto(s)
Compostaje , Suelo , ARN Ribosómico 16S/genética , Aguas del Alcantarillado , Microbiología del Suelo
20.
Front Plant Sci ; 12: 768589, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992619

RESUMEN

Hevea brasiliensis (rubber tree) is a large tree species of the Euphorbiaceae family with inestimable economic importance. Rubber tree breeding programs currently aim to improve growth and production, and the use of early genotype selection technologies can accelerate such processes, mainly with the incorporation of genomic tools, such as marker-assisted selection (MAS). However, few quantitative trait loci (QTLs) have been used successfully in MAS for complex characteristics. Recent research shows the efficiency of genome-wide association studies (GWAS) for locating QTL regions in different populations. In this way, the integration of GWAS, RNA-sequencing (RNA-Seq) methodologies, coexpression networks and enzyme networks can provide a better understanding of the molecular relationships involved in the definition of the phenotypes of interest, supplying research support for the development of appropriate genomic based strategies for breeding. In this context, this work presents the potential of using combined multiomics to decipher the mechanisms of genotype and phenotype associations involved in the growth of rubber trees. Using GWAS from a genotyping-by-sequencing (GBS) Hevea population, we were able to identify molecular markers in QTL regions with a main effect on rubber tree plant growth under constant water stress. The underlying genes were evaluated and incorporated into a gene coexpression network modelled with an assembled RNA-Seq-based transcriptome of the species, where novel gene relationships were estimated and evaluated through in silico methodologies, including an estimated enzymatic network. From all these analyses, we were able to estimate not only the main genes involved in defining the phenotype but also the interactions between a core of genes related to rubber tree growth at the transcriptional and translational levels. This work was the first to integrate multiomics analysis into the in-depth investigation of rubber tree plant growth, producing useful data for future genetic studies in the species and enhancing the efficiency of the species improvement programs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...