Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Mol Psychiatry ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684795

RESUMEN

Schizophrenia (SCZ) is a neuropsychiatric disorder, caused by a combination of genetic and environmental factors. The etiology behind the disorder remains elusive although it is hypothesized to be associated with the aberrant response to neurotransmitters, such as dopamine and glutamate. Therefore, investigating the link between dysregulated metabolites and distorted neurodevelopment holds promise to offer valuable insights into the underlying mechanism of this complex disorder. In this study, we aimed to explore a presumed correlation between the transcriptome and the metabolome in a SCZ model based on patient-derived induced pluripotent stem cells (iPSCs). For this, iPSCs were differentiated towards cortical neurons and samples were collected longitudinally at various developmental stages, reflecting neuroepithelial-like cells, radial glia, young and mature neurons. The samples were analyzed by both RNA-sequencing and targeted metabolomics and the two modalities were used to construct integrative networks in silico. This multi-omics analysis revealed significant perturbations in the polyamine and gamma-aminobutyric acid (GABA) biosynthetic pathways during rosette maturation in SCZ lines. We particularly observed the downregulation of the glutamate decarboxylase encoding genes GAD1 and GAD2, as well as their protein product GAD65/67 and their biochemical product GABA in SCZ samples. Inhibition of ornithine decarboxylase resulted in further decrease of GABA levels suggesting a compensatory activation of the ornithine/putrescine pathway as an alternative route for GABA production. These findings indicate an imbalance of cortical excitatory/inhibitory dynamics occurring during early neurodevelopmental stages in SCZ. Our study supports the hypothesis of disruption of inhibitory circuits to be causative for SCZ and establishes a novel in silico approach that enables for integrative correlation of metabolic and transcriptomic data of psychiatric disease models.

2.
Schizophr Res ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38290943

RESUMEN

BACKGROUND: Schizophrenia (SCZ) is a severe neuropsychiatric disorder of complex, poorly understood etiology, associated with both genetic and environmental factors. De novo mutations (DNMs) represent a new source of genetic variation in SCZ, however, in most cases their biological significance remains unclear. We sought to investigate molecular disease pathways connected to DNMs in SCZ by combining human induced pluripotent stem cell (hiPSC) based disease modeling and CRISPR-based genome editing. METHODS: We selected a SCZ case-parent trio with the case individual carrying a potentially disease causing 1495C > T nonsense DNM in the zinc finger MYND domain-containing protein 11 (ZMYND11), a gene implicated in biological processes relevant for SCZ. In the patient-derived hiPSC line the mutation was corrected using CRISPR, while monoallelic or biallelic frameshift mutations were introduced into a control hiPSC line. Isogenic cell lines were differentiated into hippocampal neuronal progenitor cells (NPCs) and functionally active dentate gyrus granule cells (DGGCs). Immunofluorescence microscopy and RNA sequencing were used to test for morphological and transcriptomic differences at NPC and DGCC stages. Functionality of neurons was investigated using calcium-imaging and multi-electrode array measurements. RESULTS: Morphology in the mutant hippocampal NPCs and neurons was preserved, however, we detected significant transcriptomic and functional alterations. RNA sequencing showed massive upregulation of neuronal differentiation genes, and downregulation of cell adhesion genes. Decreased reactivity to glutamate was demonstrated by calcium-imaging. CONCLUSIONS: Our findings lend support to the involvement of glutamatergic dysregulation in the pathogenesis of SCZ. This approach represents a powerful model system for precision psychiatry and pharmacological research.

3.
Elife ; 122023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37830910

RESUMEN

Creatine transporter deficiency (CTD) is an X-linked disease caused by mutations in the SLC6A8 gene. The impaired creatine uptake in the brain results in intellectual disability, behavioral disorders, language delay, and seizures. In this work, we generated human brain organoids from induced pluripotent stem cells of healthy subjects and CTD patients. Brain organoids from CTD donors had reduced creatine uptake compared with those from healthy donors. The expression of neural progenitor cell markers SOX2 and PAX6 was reduced in CTD-derived organoids, while GSK3ß, a key regulator of neurogenesis, was up-regulated. Shotgun proteomics combined with integrative bioinformatic and statistical analysis identified changes in the abundance of proteins associated with intellectual disability, epilepsy, and autism. Re-establishment of the expression of a functional SLC6A8 in CTD-derived organoids restored creatine uptake and normalized the expression of SOX2, GSK3ß, and other key proteins associated with clinical features of CTD patients. Our brain organoid model opens new avenues for further characterizing the CTD pathophysiology and supports the concept that reinstating creatine levels in patients with CTD could result in therapeutic efficacy.


Asunto(s)
Discapacidad Intelectual , Discapacidad Intelectual Ligada al Cromosoma X , Humanos , Discapacidad Intelectual/genética , Creatina/genética , Creatina/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Encéfalo/metabolismo , Organoides/metabolismo
4.
Curr Protoc ; 3(9): e889, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37747346

RESUMEN

Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) hold tremendous potential for cardiovascular disease modeling, drug screening, personalized medicine, and pathophysiology studies. The availability of a robust protocol and functional assay for studying phenotypic behavior of hiPSC-CMs is essential for establishing an in vitro disease model. Many heart diseases manifest due to changes in the mechanical strain of cardiac tissue. Therefore, non-invasive evaluation of the contractility properties of hiPSC-CMs remains crucial to gain an insight into the pathogenesis of cardiac diseases. Speckle tracking-based strain analysis is an efficient non-invasive method that uses video microscopy and image analysis of beating hiPSC-CMs for quantitative evaluation of mechanical contractility properties. This article presents step-by-step protocols for extracting quantitative contractility properties of an hiPSC-CM system obtained from five members of a family, of whom three were affected by DiGeorge syndrome, using speckle tracking-based strain analysis. The hiPSCs from the family members were differentiated and purified into hiPSC-CMs using metabolic selection. Time-lapse images of hiPSC-CMs were acquired using high-spatial-resolution and high-time-resolution phase-contrast video microscopy. Speckled images were characterized by evaluating the cross-correlation coefficient, speckle size, speckle contrast, and speckle quality of the images. The optimum parameters of the speckle tracking algorithm were determined by performing sensitivity analysis concerning computation time, effective mapping area, average contraction velocity, and strain. Furthermore, the hiPSC-CM response to adrenaline was evaluated to validate the sensitivity of the strain analysis algorithm. Then, we applied speckle tracking-based strain analysis to characterize the dynamic behavior of patient-specific hiPSC-CMs from the family members affected/unaffected by DiGeorge syndrome. Here, we report an efficient and manipulation-free method to analyze the contraction displacement vector and velocity field, contraction-relaxation strain rate, and contractile cycles. Implementation of this method allows for quantitative analysis of the contractile phenotype characteristics of hiPSC-CMs to distinguish possible cardiac manifestation of DiGeorge syndrome. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Differentiation of iPSCs into iPSC-derived cardiomyocytes (iPSC-CMs) and metabolic selection of differentiated iPSC-CMs Support Protocol 1: Culture, maintenance, and expansion of human iPSCs Support Protocol 2: Immunohistochemistry of iPSC-CMs Basic Protocol 2: Time-lapse speckle imaging of iPSC-CMs and speckle quality characterization Support Protocol 3: Enhancement of local contrast of videos by applying contrast limited adaptive histogram equalization (CLAHE) to all frames Support Protocol 4: Evaluation of average speckle size Support Protocol 5: Evaluation of average speckle contrast Support Protocol 6: Determination of relative peak height, Pc(x), of consecutive images acquired from video microscopy of iPSC-CMs Basic Protocol 3: Speckle tracking-based analysis of beating iPSC-CMs Support Protocol 7: Validation of sensitivity of the speckle tracking analysis for mapping the contractility of iPSC-CMs Basic Protocol 4: Data extraction, visualization, and mapping of contractile cycles of iPSC-CMs.


Asunto(s)
Síndrome de DiGeorge , Cardiopatías , Células Madre Pluripotentes Inducidas , Humanos , Miocitos Cardíacos , Algoritmos , Bioensayo
5.
Sci Rep ; 13(1): 7760, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173337

RESUMEN

In human cells two dUTPase isoforms have been described: one nuclear (DUT-N) and one mitochondrial (DUT-M), with cognate localization signals. In contrast, here we identified two additional isoforms; DUT-3 without any localization signal and DUT-4 with the same nuclear localization signal as DUT-N. Based on an RT-qPCR method for simultaneous isoform-specific quantification we analysed the relative expression patterns in 20 human cell lines of highly different origins. We found that the DUT-N isoform is expressed by far at the highest level, followed by the DUT-M and the DUT-3 isoform. A strong correlation between expression levels of DUT-M and DUT-3 suggests that these two isoforms may share the same promoter. We analysed the effect of serum starvation on the expression of dUTPase isoforms compared to non-treated cells and found that the mRNA levels of DUT-N decreased in A-549 and MDA-MB-231 cells, but not in HeLa cells. Surprisingly, upon serum starvation DUT-M and DUT-3 showed a significant increase in the expression, while the expression level of the DUT-4 isoform did not show any changes. Taken together our results indicate that the cellular dUTPase supply may also be provided in the cytoplasm and starvation stress induced expression changes are cell line dependent.


Asunto(s)
Núcleo Celular , Mitocondrias , Humanos , Células HeLa , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo
6.
Genes (Basel) ; 13(11)2022 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-36360162

RESUMEN

Maturation of microRNAs (miRNAs) begins by the "Microprocessor" complex, containing the Drosha endonuclease and its partner protein, "DiGeorge Syndrome Critical Region 8" (DGCR8). Although the main function of the two proteins is to coordinate the first step of precursor miRNAs formation, several studies revealed their miRNA-independent functions in other RNA-related pathways (e.g., in snoRNA decay) or, for the DGCR8, the role in tissue development. To investigate the specific roles of DGCR8 in various cellular pathways, we previously established a human embryonic stem-cell (hESC) line carrying a monoallelic DGCR8 mutation by using the CRISPR-Cas9 system. In this study, we genetically characterized single-cell originated progenies of the cell line and showed that DGCR8 heterozygous mutation results in only a modest effect on the mRNA level but a significant decrease at the protein level. Self-renewal and trilineage differentiation capacity of these hESCs were not affected by the mutation. However, partial disturbance of the Microprocessor function could be revealed in pri-miRNA processing along the human chromosome 19 miRNA cluster in several clones. With all these studies, we can demonstrate that the mutant hESC line is a good model to study not only miRNA-related but also other "noncanonical" functions of the DGCR8 protein.


Asunto(s)
MicroARNs , Proteínas de Unión al ARN , Humanos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN , Células Madre/metabolismo , Mutación
7.
Front Cell Dev Biol ; 10: 997028, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313581

RESUMEN

Microglia, the primary immune cells of the brain, significantly influence the fate of neurons after neural damage. Depending on the local environment, they exhibit a wide range of phenotypes, including patrolling (naïve), proinflammatory, and anti-inflammatory characteristics, which greatly affects neurotoxicity. Despite the fact that neural progenitor cells (NPCs) and hippocampal neurons represent cell populations, which play pivotal role in neural regeneration, interaction between microglia and these cell types is poorly studied. In the present work, we investigated how microglial cells affect the proliferation and neurite outgrowth of human stem cell-derived NPCs, and how microglia stimulation with proinflammatory or anti-inflammatory agents modulates this interaction. We found that naïve microglia slightly diminish NPC proliferation and have no effect on neurite outgrowth. In contrast, proinflammatory stimulated microglia promote both proliferation and neurite generation, whereas microglia stimulated with anti-inflammatory cytokines augment neurite outgrowth leaving NPC proliferation unaffected. We also studied how microglia influence neurite development and differentiation of hippocampal dentate gyrus granule cells differentiated from NPCs. We found that proinflammatory stimulated microglia inhibit axonal development but facilitate dendrite generation in these differentiating neurons. Our results elucidate a fine-tuned modulatory effect of microglial cells on cell types crucial for neural regeneration, opening perspectives for novel regenerative therapeutic interventions.

8.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955935

RESUMEN

Tyrosine kinase substrate with four SH3 domains (Tks4) scaffold protein plays roles in cell migration and podosome formation and regulates systemic mechanisms such as adult bone homeostasis and adipogenesis. Mutations in the Tks4 gene (SH3PXD2b) cause a rare developmental disorder called Frank-Ter Haar syndrome (FTHS), which leads to heart abnormalities, bone tissue defects, and reduced adiposity. We aimed to produce a human stem cell-based in vitro FTHS model system to study the effects of the loss of the Tks4 protein in different cell lineages and the accompanying effects on the cell signalome. To this end, we used CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR associated (Cas9)) to knock out the SH3PXD2b gene in the HUES9 human embryonic stem cell line (hESC), and we obtained stable homo- and heterozygous knock out clones for use in studying the potential regulatory roles of Tks4 protein in embryonic stem cell biology. Based on pluripotency marker measurements and spontaneous differentiation capacity assays, we concluded that the newly generated Tks4-KO HUES9 cells retained their embryonic stem cell characteristics. We propose that the Tks4-KO HUES9 cells could serve as a tool for further cell differentiation studies to investigate the involvement of Tks4 in the complex disorder FTHS. Moreover, we successfully differentiated all of the clones into mesenchymal stem cells (MSCs). The derived MSC cultures showed mesenchymal morphology and expressed MSC markers, although the expression levels of mesodermal and osteogenic marker genes were reduced, and several EMT (epithelial mesenchymal transition)-related features were altered in the Tks4-KO MSCs. Our results suggest that the loss of Tks4 leads to FTHS by altering cell lineage differentiation and cell maturation processes, rather than by regulating embryonic stem cell potential.


Asunto(s)
Cardiopatías Congénitas , Células Madre Embrionarias Humanas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Niño , Anomalías Craneofaciales , Discapacidades del Desarrollo/genética , Cardiopatías Congénitas/genética , Células Madre Embrionarias Humanas/metabolismo , Humanos , Osteocondrodisplasias/congénito , Enfermedades Raras
9.
Gene ; 834: 146609, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35609796

RESUMEN

Transposable elements are widespread in all living organisms. In addition to self-reproduction, they are a major source of genetic variation that drives genome evolution but our knowledge of the functions of human genes derived from transposases is limited. There are examples of transposon-derived, domesticated human genes that lost (SETMAR) or retained (THAP9) their transposase activity, however, several remnants in the human genome have not been thoroughly investigated yet. These include the five human piggyBac-derived sequences (PGBD1-5) which share ancestry with the Trichoplusia ni originated piggyBac (PB) transposase. Since PB is widely used in gene delivery applications, the potential activities of endogenous PGBDs are important to address. However, previous data is controversial, especially with the claimed transposition activity of PGBD5, it awaits further investigations. Here, we aimed to systematically analyze all five human PGBD proteins from several aspects, including phylogenetic conservation, potential transposase activity, expression pattern and their regulation in different stress conditions. Among PGBDs, PGBD5 is under the highest purifying selection, and exhibits the most cell type specific expression pattern. In a two-component vector system, none of the human PGBDs could mobilize either the insect PB transposon or the endogenous human PB-like MER75 and MER85 elements with intact terminal sequences. When cells were exposed to various stress conditions, including hypoxia, oxidative or UV stress, the expression profiles of all PGBDs showed different, often cell type specific responses; however, the pattern of PGBD5 in most cases had the opposite tendency than that of the other piggyBac-derived elements. Taken together, our results indicate that human PGBD elements did not retain their mobilizing activity, but their cell type specific, and cellular stress related expression profiles point toward distinct domesticated functions that require further characterization.


Asunto(s)
Domesticación , Transposasas , Elementos Transponibles de ADN/genética , Genoma Humano , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Filogenia , Transposasas/genética , Transposasas/metabolismo
10.
Methods Mol Biol ; 2454: 241-255, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33826126

RESUMEN

Human neuronal cell cultures are essential tools for biological and preclinical studies of our nervous system. Since we have very limited access to primary human neural samples, derivation of proliferative neural progenitor cells (NPCs) from cells harvested by minimally invasive sampling is a key issue. Here we describe a "shortcut" method to establish proliferative NPC cultures directly from peripheral blood mononuclear cells (PBMCs) via interrupted reprogramming. In addition, we provide procedures to characterize the NPC stage.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Diferenciación Celular/fisiología , Reprogramación Celular , Humanos , Leucocitos Mononucleares , Neuronas
11.
Methods Mol Biol ; 2454: 213-230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33982275

RESUMEN

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) hold great promise for cardiovascular disease modeling, drug screening and personalized medicine. A crucial requirement to establish an hPSC-CM-based disease model is the availability of a reliable differentiation protocol and a functional assessment of phenotypic properties of CMs in a disease context. Characterization of relative changes in contractile behavior of CMs can provide insight not only about drug effects but into the pathogenesis of cardiovascular diseases. Image-based optical-flow analysis, which applies a speckle tracking algorithm to videomicroscopy of hPSC-CMs, is a noninvasive method to quantitatively assess the dynamics of mechanical contraction of the CMs. This method offers an efficient characterization of contractile cycles. It quantifies contraction velocity field, beat rate, contractile strain and contraction-relaxation strain rate profile, which are important phenotypic characteristics of CMs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular , Evaluación Preclínica de Medicamentos/métodos , Humanos , Contracción Muscular , Miocitos Cardíacos
12.
ESC Heart Fail ; 9(1): 224-235, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34931757

RESUMEN

AIMS: Hippo signalling is an evolutionarily conserved pathway that controls organ size by regulating apoptosis, cell proliferation, and stem cell self-renewal. Recently, the pathway has been shown to exert powerful growth regulatory activity in cardiomyocytes. However, the functional role of this stress-related and cell death-related pathway in the human heart and cardiomyocytes is not known. In this study, we investigated the role of the transcriptional co-activators of Hippo signalling, YAP and TAZ, in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in response to cardiotoxic agents and investigated the effects of modulating the pathway on cardiomyocyte function and survival. METHODS AND RESULTS: RNA-sequencing analysis of human heart samples with doxorubicin-induced end-stage heart failure and healthy controls showed that YAP and ERBB2 (HER2) as upstream regulators of differentially expressed genes correlated with doxorubicin treatment. Thus, we tested the effects of doxorubicin on hiPSC-CMs in vitro. Using an automated high-content screen of 96 clinically relevant antineoplastic and cardiotherapeutic drugs, we showed that doxorubicin induced the highest activation of YAP/TAZ nuclear translocation in both hiPSC-CMs and control MCF7 breast cancer cells. The overexpression of YAP rescued doxorubicin-induced cell loss in hiPSC-CMs by inhibiting apoptosis and inducing proliferation. In contrast, silencing of YAP and TAZ by siRNAs resulted in elevated mitochondrial membrane potential loss in response to doxorubicin. hiPSC-CM calcium transients did not change in response to YAP/TAZ silencing. CONCLUSIONS: Our results suggest that Hippo signalling is involved in clinical anthracycline-induced cardiomyopathy. Modelling with hiPSC-CMs in vitro showed similar responses to doxorubicin as adult cardiomyocytes and revealed a potential cardioprotective effect of YAP in doxorubicin-induced cardiotoxicity.


Asunto(s)
Cardiomiopatías , Factores de Transcripción , Cardiomiopatías/inducido químicamente , Cardiomiopatías/metabolismo , Cardiotoxicidad/etiología , Doxorrubicina/efectos adversos , Doxorrubicina/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/farmacología , Proteínas Señalizadoras YAP
13.
J Mol Cell Cardiol ; 165: 19-30, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34959166

RESUMEN

BACKGROUND: Cardiac cell lines and primary cells are widely used in cardiovascular research. Despite increasing number of publications using these models, comparative characterization of these cell lines has not been performed, therefore, their limitations are undetermined. We aimed to compare cardiac cell lines to primary cardiomyocytes and to mature cardiac tissues in a systematic manner. METHODS AND RESULTS: Cardiac cell lines (H9C2, AC16, HL-1) were differentiated with widely used protocols. Left ventricular tissue, neonatal primary cardiomyocytes, and human induced pluripotent stem cell-derived cardiomyocytes served as reference tissue or cells. RNA expression of cardiac markers (e.g. Tnnt2, Ryr2) was markedly lower in cell lines compared to references. Differentiation induced increase in cardiac- and decrease in embryonic markers however, the overall transcriptomic profile and annotation to relevant biological processes showed consistently less pronounced cardiac phenotype in all cell lines in comparison to the corresponding references. Immunocytochemistry confirmed low expressions of structural protein sarcomeric alpha-actinin, troponin I and caveolin-3 in cell lines. Susceptibility of cell lines to sI/R injury in terms of viability as well as mitochondrial polarization differed from the primary cells irrespective of their degree of differentiation. CONCLUSION: Expression patterns of cardiomyocyte markers and whole transcriptomic profile, as well as response to sI/R, and to hypertrophic stimuli indicate low-to-moderate similarity of cell lines to primary cells/cardiac tissues regardless their differentiation. Low resemblance of cell lines to mature adult cardiac tissue limits their potential use. Low translational value should be taken into account while choosing a particular cell line to model cardiomyocytes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Animales , Biomarcadores/metabolismo , Diferenciación Celular/genética , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Fenotipo , Transcriptoma
14.
Sci Rep ; 11(1): 19459, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593877

RESUMEN

Reverse transcription-quantitative real-time PCR (RT-qPCR) is a ubiquitously used method in biological research, however, finding appropriate reference genes for normalization is challenging. We aimed to identify genes characterized with low expression variability among human cancer and normal cell lines. For this purpose, we investigated the expression of 12 candidate reference genes in 13 widely used human cancer cell lines (HeLa, MCF-7, A-549, K-562, HL-60(TB), HT-29, MDA-MB-231, HCT 116, U-937, SH-SY5Y, U-251MG, MOLT-4 and RPMI-8226) and, in addition, 7 normal cell lines (HEK293, MRC-5, HUVEC/TERT2, HMEC, HFF-1, HUES 9, XCL-1). In our set of genes, we included SNW1 and CNOT4 as novel candidate reference genes based on the RNA HPA cell line gene data from The Human Protein Atlas. HNRNPL and PCBP1 were also included along with the "classical" reference genes ACTB, GAPDH, IPO8, PPIA, PUM1, RPL30, TBP and UBC. Results were evaluated using GeNorm, NormFiner, BestKeeper and the Comparative ΔCt methods. In conclusion, we propose IPO8, PUM1, HNRNPL, SNW1 and CNOT4 as stable reference genes for comparing gene expression between different cell lines. CNOT4 was also the most stable gene upon serum starvation.


Asunto(s)
Perfilación de la Expresión Génica/normas , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Línea Celular , Línea Celular Tumoral , Perfilación de la Expresión Génica/métodos , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estándares de Referencia , Reproducibilidad de los Resultados
15.
Front Cell Dev Biol ; 9: 719636, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604221

RESUMEN

Studies on neural development and neuronal regeneration after injury are mainly based on animal models. The establishment of pluripotent stem cell (PSC) technology, however, opened new perspectives for better understanding these processes in human models by providing unlimited cell source for hard-to-obtain human tissues. Here, we aimed at identifying the molecular factors that confine and modulate an early step of neural regeneration, the formation of neurites in human neural progenitor cells (NPCs). Enhanced green fluorescent protein (eGFP) was stably expressed in NPCs differentiated from human embryonic and induced PSC lines, and the neurite outgrowth was investigated under normal and injury-related conditions using a high-content screening system. We found that inhibitors of the non-muscle myosin II (NMII), blebbistatin and its novel, non-toxic derivatives, initiated extensive neurite outgrowth in human NPCs. The extracellular matrix components strongly influenced the rate of neurite formation but NMII inhibitors were able to override the inhibitory effect of a restrictive environment. Non-additive stimulatory effect on neurite generation was also detected by the inhibition of Rho-associated, coiled-coil-containing protein kinase 1 (ROCK1), the upstream regulator of NMII. In contrast, inhibition of c-Jun N-terminal kinases (JNKs) had only a negligible effect, suggesting that the ROCK1 signal is dominantly manifested by actomyosin activity. In addition to providing a reliable cell-based in vitro model for identifying intrinsic mechanisms and environmental factors responsible for impeded axonal regeneration in humans, our results demonstrate that NMII and ROCK1 are important pharmacological targets for the augmentation of neural regeneration at the progenitor level. These studies may open novel perspectives for development of more effective pharmacological treatments and cell therapies for various neurodegenerative disorders.

16.
iScience ; 24(4): 102312, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33855282

RESUMEN

Mesenchymal stromal cell-like (MSCl) cells generated from human embryonic stem cells are considered to be an eligible cell line to model the immunomodulatory behavior of mesenchymal stromal cells (MSCs) in vitro. Dendritic cells (DCs) are essential players in the maintenance and restoration of the sensitive balance between tolerance and immunity. Here, the effects of MSCl cells on the in vitro differentiation of human monocytes into DCs were investigated. MSCl cells promote the differentiation of CTLA-4 expressing DCs via the production of all-trans retinoic acid (ATRA) functioning as a ligand of RARα, a key nuclear receptor in DC development. These semi-matured DCs exhibit an ability to activate allogeneic, naive T cells and polarize them into IL-10 + IL-17 + double-positive T helper cells in a CTLA-4-dependent manner. Mapping the molecular mechanisms of MSC-mediated indirect modulation of DC differentiation may help to expand MSCs' clinical application in cell-free therapies.

17.
Stem Cell Res ; 51: 102140, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33503521

RESUMEN

Here we describe the generation of induced pluripotent stem cell lines from each member - male proband, mother, father - of a schizophrenia case-parent trio that participated in an exome sequencing study, and 3 de novo mutations were identified in the proband. Peripheral blood mononuclear cells were obtained from all three individuals and reprogrammed using Sendai virus particles carrying the Yamanaka transgenes. These 3 iPSC lines (iPSC-SZ-HU-MO 1, iPSC-SZ-HU-FA 1, and iPSC-SZ-HU-PROB 1) represent a resource for examining the functional significance of the identified de novo mutations in the molecular pathophysiology of schizophrenia.


Asunto(s)
Células Madre Pluripotentes Inducidas , Esquizofrenia , Células Clonales , Humanos , Leucocitos Mononucleares , Masculino , Mutación/genética , Proteínas de Unión al ARN , Receptores KIR2DL1 , Esquizofrenia/genética , Sialoglicoproteínas , Transactivadores
18.
RNA Biol ; 18(8): 1170-1180, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33052778

RESUMEN

One of the longest human microRNA (miRNA) clusters is located on chromosome 19 (C19MC), containing 46 miRNA genes, which were considered to be expressed simultaneously and at similar levels from a common long noncoding transcript. Investigating the two tissue types where C19MC is exclusively expressed, we could show that there is a tissue-specific and chromosomal position-dependent decrease in mature miRNA levels towards the 3' end of the cluster in embryonic stem cells but not in placenta. Although C19MC transcription level is significantly lower in stem cells, this gradual decrease is not present at the primary miRNA levels, indicating that a difference in posttranscriptional processing could explain this observation. By depleting Drosha, the nuclease component of the Microprocessor complex, we could further enhance the positional decrease in stem cells, demonstrating that a tissue-specific, local availability of the Microprocessor complex could lie behind the phenomenon. Moreover, we could describe a tissue-specific promoter being exclusively active in placenta, and the epigenetic mark analysis suggested the presence of several putative enhancer sequences in this region. Performing specific chromatin immunoprecipitation followed by quantitative real-time PCR experiments we could show a strong association of Drosha with selected enhancer regions in placenta, but not in embryonic stem cells. These enhancers could provide explanation for a more efficient co-transcriptional recruitment of the Microprocessor, and therefore a more efficient processing of pri-miRNAs throughout the cluster in placenta. Our results point towards a new model where tissue-specific, posttranscriptional 'fine-tuning' can differentiate among miRNAs that are expressed simultaneously from a common precursor.


Asunto(s)
Cromosomas Humanos Par 19/química , Células Madre Embrionarias Humanas/metabolismo , MicroARNs/genética , Placenta/metabolismo , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , Ribonucleasa III/genética , Línea Celular Tumoral , Elementos de Facilitación Genéticos , Epigénesis Genética , Femenino , Células Madre Embrionarias Humanas/citología , Humanos , MicroARNs/metabolismo , Familia de Multigenes , Especificidad de Órganos , Placenta/citología , Embarazo , Precursores del ARN/metabolismo , Ribonucleasa III/deficiencia , Transcripción Genética
19.
Stem Cell Res ; 50: 102134, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33360445

RESUMEN

DiGeorge Syndrome (DGS) Critical Region 8 (DGCR8) is a primary candidate gene in they DGS. The DGCR8 microprocessor complex subunit is an essential cofactor in the canonical miRNA biogenesis which is involved in diverse cellular functions such as cell fate decisions, apoptosis and different signaling pathways. However, the role of DGCR8 in these processes or development of DGS is not fully understood. Here we present a heterozygous DGCR8 mutant human embryonic stem cell line (HuES9DGCR8+/-) created by the CRISPR/Cas9 system. The generated HuES9DGCR8+/- cells maintain normal karyotype, morphology, pluripotency and differentiation capacity into all three germ layers.

20.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266139

RESUMEN

Induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) are promising tools to model complex neurological or psychiatric diseases, including schizophrenia. Multiple studies have compared patient-derived and healthy control NPCs derived from iPSCs in order to investigate cellular phenotypes of this disease, although the establishment, stabilization, and directed differentiation of iPSC lines are rather expensive and time-demanding. However, interrupted reprogramming by omitting the stabilization of iPSCs may allow for the generation of a plastic stage of the cells and thus provide a shortcut to derive NPSCs directly from tissue samples. Here, we demonstrate a method to generate shortcut NPCs (sNPCs) from blood mononuclear cells and present a detailed comparison of these sNPCs with NPCs obtained from the same blood samples through stable iPSC clones and a subsequent neural differentiation (classical NPCs-cNPCs). Peripheral blood cells were obtained from a schizophrenia patient and his two healthy parents (a case-parent trio), while a further umbilical cord blood sample was obtained from the cord of a healthy new-born. The expression of stage-specific markers in sNPCs and cNPCs were compared both at the protein and RNA levels. We also performed functional tests to investigate Wnt and glutamate signaling and the oxidative stress, as these pathways have been suggested to play important roles in the pathophysiology of schizophrenia. We found similar responses in the two types of NPCs, suggesting that the shortcut procedure provides sNPCs, allowing an efficient screening of disease-related phenotypes.


Asunto(s)
Diferenciación Celular , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Biomarcadores , Diferenciación Celular/genética , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Glutamina/metabolismo , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...