Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37373075

RESUMEN

Herein, we report the design and synthesis of novel 7-aza-coumarine-3-carboxamides via scaffold-hopping strategy and evaluation of their in vitro anticancer activity. Additionally, the improved non-catalytic synthesis of 7-azacoumarin-3-carboxylic acid is reported, which features water as the reaction medium and provides a convenient alternative to the known methods. The anticancer activity of the most potent 7-aza-coumarine-3-carboxamides against the HuTu 80 cell line is equal to that of reference Doxorubicin, while the selectivity towards the normal cell line is 9-14 fold higher.


Asunto(s)
Antineoplásicos , Antineoplásicos/farmacología , Relación Estructura-Actividad , Doxorrubicina , Cumarinas/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales
2.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36430824

RESUMEN

Herein we present the regio- and diastereoselective synthesis of novel pyrrolidine-fused spiro-dihydrophosphacoumarins via intermolecular [3 + 2] cycloaddition reaction. The presented approach is complementary to existing ones and provides an easy entry to the otherwise inaccessible derivatives. Additionally, the unprecedented pathway of the reaction of 4-hydroxycoumarin with azomethine ylides is described. The anti-cancer activity of the obtained compounds was tested in vitro, the most potent compound being 2.6-fold more active against the HuTu 80 cell line than the reference 5-fluorouracil, with a selectivity index > 32.


Asunto(s)
Compuestos de Espiro , Compuestos de Espiro/farmacología , Estereoisomerismo , Reacción de Cicloadición
3.
Nanomaterials (Basel) ; 12(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35683639

RESUMEN

The dimensional effect of electric charge storage with a density of up to 270 µF/g by the hydrated ZrO2-nanoparticles system was determined. It was found that the place of localization of different charge carriers is the generalized heterophase boundary-nanoparticles surface. The supposed mechanism of the effect was investigated using the theory of dispersed systems, the band theory, and the theory of contact phenomena in semiconductors, which consists of the formation of localized electronic states in the nanoparticle material due to donor-acceptor interaction with the adsorption ionic atmosphere. The effect is relevant for modern nanoelectronics, microsystem technology, and printed electronics because it allows overcoming the basic physical restrictions on the size, temperature, and operation frequency of the device, caused by leakage currents.

4.
Heliyon ; 7(3): e06517, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33817378

RESUMEN

This study examines the adhesive properties and cytotoxicity of polyelectrolyte nanofilms from polyethyleneimine (PEI), polyallylamine hydrochloride (PAH) and sodium polystyrene sulfonate (PSS) on human bone marrow mesenchymal stromal cells (h-MSCs) and mouse adipose tissue (m-MSC) in vitro. Films are formed on 24- and 96-well culture plates in the combinations: PEI, PAH, PEI-PSS, PEI-PSS-PAH, PEI-PSS-PEI. An analysis of the culture results show that direct contact of h-MSCs with the PEI surface promotes adhesion (93-95% of adhesive cells versus 40% in the control). On the PEI surface, h-MSCs are evenly distributed, form colonies and 80% monolayer after 72 h of culture, as in the control on culture plastic. On nanofilms from PAH and PEI-PSS-PAH, cells grow in the form of rosette-like colonies with long and thin processes similar to neurites. The cytotoxic properties of PSS were revealed in direct contact with h-MSCs (more than 40% of nonviable cells with damaged plasma membranes). On the PSS surface, cells lost their adhesiveness. To culture and stably grow the cell mass of h-MSCs, it is better to use monolayer nanofilms made of highly adhesive and non-toxic PEI polyelectrolyte, which can bind the growth factors of blood serum and platelet lysate, ensuring the growth of h-MSCs under in vitro deprivation conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...