Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(17)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38747996

RESUMEN

Ge-Sb-Te (GST) alloys are leading phase-change materials for data storage due to the fast phase transition between amorphous and crystalline states. Ongoing research aims at improving the stability of the amorphous phase to improve retention. This can be accomplished by the introduction of carbon as a dopant to Ge2Sb2Te5, which is known to alter the short- and mid-range structure of the amorphous phase and form covalently bonded C clusters, both of which hinder crystallization. The relative importance of these processes as a function of C concentration is not known. We used molecular dynamics simulation based on density functional theory to study how carbon doping affects the atomic structure of GST-C. Carbon doping results in an increase in tetrahedral coordination, especially of Ge atoms, and this is known to stabilize the amorphous phase. We observe an unexpected, non-monotonous trend in the number of tetrahedral bonded Ge with the amount of carbon doping. Our simulations show an increase in the number of tetrahedral bonded Ge up to 5 at.% C, after which the number saturates and begins to decrease above 14 at.% C. The carbon atoms aggregate into clusters, mostly in the form of chains and graphene flakes, leaving less carbon to disrupt the GST matrix at higher carbon concentrations. Different degrees of carbon clustering can explain divergent experimental results for recrystallization temperature for carbon doped GST.

2.
J Phys Chem A ; 128(6): 1142-1153, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38296225

RESUMEN

Predictive models for the performance of explosives and propellants are important for their design, optimization, and safety. Thermochemical codes can predict some of these properties from fundamental quantities such as density and formation energies that can be obtained from first principles. Models that are simpler to evaluate are desirable for efficient, rapid screening of material screening. In addition, interpretable models can provide insight into the physics and chemistry of these materials that could be useful to direct new synthesis. Current state-of-the-art performance models are based on either the parametrization of physics-based expressions or data-driven approaches with minimal interpretability. We use parsimonious neural networks (PNNs) to discover interpretable models for the specific impulse of propellants and detonation velocity and pressure for explosives using data collected from the open literature. A combination of evolutionary optimization with custom neural networks explores and trains models with objective functions that balance accuracy and complexity. For all three properties of interest, we find interpretable models that are Pareto optimal in the accuracy and simplicity space.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...