Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Cerebellum ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769243

RESUMEN

Cerebellum is a key-structure for the modulation of motor, cognitive, social and affective functions, contributing to automatic behaviours through interactions with the cerebral cortex, basal ganglia and spinal cord. The predictive mechanisms used by the cerebellum cover not only sensorimotor functions but also reward-related tasks. Cerebellar circuits appear to encode temporal difference error and reward prediction error. From a chemical standpoint, cerebellar catecholamines modulate the rate of cerebellar-based cognitive learning, and mediate cerebellar contributions during complex behaviours. Reward processing and its associated emotions are tuned by the cerebellum which operates as a controller of adaptive homeostatic processes based on interoceptive and exteroceptive inputs. Lobules VI-VII/areas of the vermis are candidate regions for the cortico-subcortical signaling pathways associated with loss aversion and reward sensitivity, together with other nodes of the limbic circuitry. There is growing evidence that the cerebellum works as a hub of regional dysconnectivity across all mood states and that mental disorders involve the cerebellar circuitry, including mood and addiction disorders, and impaired eating behaviors where the cerebellum might be involved in longer time scales of prediction as compared to motor operations. Cerebellar patients exhibit aberrant social behaviour, showing aberrant impulsivity/compulsivity. The cerebellum is a master-piece of reward mechanisms, together with the striatum, ventral tegmental area (VTA) and prefrontal cortex (PFC). Critically, studies on reward processing reinforce our view that a fundamental role of the cerebellum is to construct internal models, perform predictions on the impact of future behaviour and compare what is predicted and what actually occurs.

2.
Nat Commun ; 15(1): 907, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383456

RESUMEN

Post-infectious myalgic encephalomyelitis/chronic fatigue syndrome (PI-ME/CFS) is a disabling disorder, yet the clinical phenotype is poorly defined, the pathophysiology is unknown, and no disease-modifying treatments are available. We used rigorous criteria to recruit PI-ME/CFS participants with matched controls to conduct deep phenotyping. Among the many physical and cognitive complaints, one defining feature of PI-ME/CFS was an alteration of effort preference, rather than physical or central fatigue, due to dysfunction of integrative brain regions potentially associated with central catechol pathway dysregulation, with consequences on autonomic functioning and physical conditioning. Immune profiling suggested chronic antigenic stimulation with increase in naïve and decrease in switched memory B-cells. Alterations in gene expression profiles of peripheral blood mononuclear cells and metabolic pathways were consistent with cellular phenotypic studies and demonstrated differences according to sex. Together these clinical abnormalities and biomarker differences provide unique insight into the underlying pathophysiology of PI-ME/CFS, which may guide future intervention.


Asunto(s)
Enfermedades Transmisibles , Síndrome de Fatiga Crónica , Humanos , Síndrome de Fatiga Crónica/metabolismo , Leucocitos Mononucleares/metabolismo , Enfermedades Transmisibles/metabolismo , Biomarcadores/metabolismo , Fenotipo
5.
Nat Med ; 30(2): 560-572, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38291301

RESUMEN

Nutrition has broad impacts on all physiological processes. However, how nutrition affects human immunity remains largely unknown. Here we explored the impact of a dietary intervention on both immunity and the microbiota by performing a post hoc analysis of a clinical trial in which each of the 20 participants sequentially consumed vegan or ketogenic diets for 2 weeks ( NCT03878108 ). Using a multiomics approach including multidimensional flow cytometry, transcriptomic, proteomic, metabolomic and metagenomic datasets, we assessed the impact of each diet, and dietary switch, on host immunity and the microbiota. Our data revealed that overall, a ketogenic diet was associated with a significant upregulation of pathways and enrichment in cells associated with the adaptive immune system. In contrast, a vegan diet had a significant impact on the innate immune system, including upregulation of pathways associated with antiviral immunity. Both diets significantly and differentially impacted the microbiome and host-associated amino acid metabolism, with a strong downregulation of most microbial pathways following ketogenic diet compared with baseline and vegan diet. Despite the diversity of participants, we also observed a tightly connected network between datasets driven by compounds associated with amino acids, lipids and the immune system. Collectively, this work demonstrates that in diverse participants 2 weeks of controlled dietary intervention is sufficient to significantly and divergently impact host immunity, which could have implications for precision nutritional interventions. ClinicalTrials.gov registration: NCT03878108 .


Asunto(s)
Dieta Cetogénica , Dieta Vegana , Humanos , Proteómica , Ensayos Clínicos como Asunto
6.
Neuropsychologia ; 189: 108681, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37709193

RESUMEN

There is currently mixed evidence on the effect of Parkinson's disease on motor adaptation. Some studies report that patients display adaptation comparable to age-matched controls, while others report a complete inability to adapt to novel sensory perturbations. Here, early to mid-stage Parkinson's patients were recruited to perform a prism adaptation task. When compared to controls, patients showed slower rates of initial adaptation but intact aftereffects. These results support the suggestion that patients with early to mid-stage Parkinson's disease display intact adaptation driven by sensory prediction errors, as shown by the intact aftereffect. But impaired facilitation of performance through cognitive strategies informed by task error, as shown by the impaired initial adaptation. These results support recent studies that suggest that patients with Parkinson's disease retain the ability to perform visuomotor adaptation, but display altered use of cognitive strategies to aid performance and generalises these previous findings to the classical prism adaptation task.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/psicología , Desempeño Psicomotor , Adaptación Fisiológica
7.
Sci Transl Med ; 15(707): eadg0873, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37531416

RESUMEN

Host restriction factors play key roles in innate antiviral defense, but it remains poorly understood which of them restricts HIV-1 in vivo. Here, we used single-cell transcriptomic analysis to identify host factors associated with HIV-1 control during acute infection by correlating host gene expression with viral RNA abundance within individual cells. Wide sequencing of cells from one participant with the highest plasma viral load revealed that intracellular viral RNA transcription correlates inversely with expression of the gene PTMA, which encodes prothymosin α. This association was genome-wide significant (Padjusted < 0.05) and was validated in 28 additional participants from Thailand and the Americas with HIV-1 CRF01_AE and subtype B infections, respectively. Overexpression of prothymosin α in vitro confirmed that this cellular factor inhibits HIV-1 transcription and infectious virus production. Our results identify prothymosin α as a host factor that restricts HIV-1 infection in vivo, which has implications for viral transmission and cure strategies.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , VIH-1/genética , Transcriptoma/genética , Infecciones por VIH/genética , ARN Viral
8.
Eur J Neurosci ; 2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37455360

RESUMEN

The role of neuromodulators in the cerebellum is not well understood. In particular, the behavioural significance of the cholinergic system in the cerebellum is unknown. To investigate the importance of cerebellar cholinergic signalling in behaviour, we infused acetylcholine receptor antagonists, scopolamine and mecamylamine, bilaterally into the rat cerebellum (centred on interpositus nucleus) and observed the motor effects through a battery of behavioural tests. These tests included unrewarded behaviour during open field exploration and a horizontal ladder walking task and reward-based beam walking and pellet reaching tasks. Infusion of a mix of the antagonists did not impair motor learning in the horizontal ladder walking or the reaching task but reduced spontaneous movement during open field exploration, impaired coordination during beam walking and ladder walking, led to fewer reaches in the pellet reaching task, slowed goal-directed reaching behaviour and reduced reward pellet consumption in a free access to food task. Infusion of the muscarinic antagonist scopolamine on its own resulted in deficits in motor performance and a reduction in the number of reward pellets consumed in the free access to food task. By contrast, infusion of the nicotinic antagonist mecamylamine on its own had no significant effect on any task, except beam walking traversal time, which was reduced. Together, these data suggest that acetylcholine in the cerebellar interpositus nucleus is important for the execution and coordination of voluntary movements mainly via muscarinic receptor signalling, especially in relation to reward-related behaviour.

9.
Front Syst Neurosci ; 17: 1148604, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37266394

RESUMEN

Introduction: The extinction of fear memories is an important component in regulating defensive behaviors, contributing toward adaptive processes essential for survival. The cerebellar medial nucleus (MCN) has bidirectional connections with the ventrolateral periaqueductal gray (vlPAG) and is implicated in the regulation of multiple aspects of fear, such as conditioned fear learning and the expression of defensive motor outputs. However, it is unclear how communication between the MCN and vlPAG changes during conditioned fear extinction. Methods: We use dynamic causal models (DCMs) to infer effective connectivity between the MCN and vlPAG during auditory cue-conditioned fear retrieval and extinction in the rat. DCMs determine causal relationships between neuronal sources by using neurobiologically motivated models to reproduce the dynamics of post-synaptic potentials generated by synaptic connections within and between brain regions. Auditory event related potentials (ERPs) during the conditioned tone offset were recorded simultaneously from MCN and vlPAG and then modeled to identify changes in the strength of the synaptic inputs between these brain areas and the relationship to freezing behavior across extinction trials. The DCMs were structured to model evoked responses to best represent conditioned tone offset ERPs and were adapted to represent PAG and cerebellar circuitry. Results: With the use of Parametric Empirical Bayesian (PEB) analysis we found that the strength of the information flow, mediated through enhanced synaptic efficacy from MCN to vlPAG was inversely related to freezing during extinction, i.e., communication from MCN to vlPAG increased with extinction. Discussion: The results are consistent with the cerebellum contributing to predictive processes that underpin fear extinction.

10.
Front Syst Neurosci ; 17: 1166166, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152612

RESUMEN

The role of the cerebellum in emotional control has gained increasing interest, with studies showing it is involved in fear learning and memory in both humans and rodents. This review will focus on the contributions of the cerebellum to the extinction of learned fear responses. Extinction of fearful memories is critical for adaptive behaviour, and is clinically relevant to anxiety disorders such as post-traumatic stress disorder, in which deficits in extinction processes are thought to occur. We present evidence that supports cerebellar involvement in fear extinction, from rodent studies that investigate molecular mechanisms and functional connectivity with other brain regions of the known fear extinction network, to fMRI studies in humans. This evidence is considered in relation to the theoretical framework that the cerebellum is involved in the formation and updating of internal models of the inner and outer world by detecting errors between predicted and actual outcomes. In the case of fear conditioning, these internal models are thought to predict the occurrence of an aversive unconditioned stimulus (US), and when the aversive US is unexpectedly omitted during extinction learning the cerebellum uses prediction errors to update the internal model. Differences between human and rodent studies are highlighted to help inform future work.

11.
J Transl Med ; 21(1): 331, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208779

RESUMEN

BACKGROUND: People with mitochondrial disease (MtD) are susceptible to metabolic decompensation and neurological symptom progression in response to an infection. Increasing evidence suggests that mitochondrial dysfunction may cause chronic inflammation, which may promote hyper-responsiveness to pathogens and neurodegeneration. We sought to examine transcriptional changes between MtD patients and healthy controls to identify common gene signatures of immune dysregulation in MtD. METHODS: We collected whole blood from a cohort of MtD patients and healthy controls and performed RNAseq to examine transcriptomic differences. We performed GSEA analyses to compare our findings against existing studies to identify commonly dysregulated pathways. RESULTS: Gene sets involved in inflammatory signaling, including type I interferons, interleukin-1ß and antiviral responses, are enriched in MtD patients compared to controls. Monocyte and dendritic cell gene clusters are also enriched in MtD patients, while T cell and B cell gene sets are negatively enriched. The enrichment of antiviral response corresponds with an independent set of MELAS patients, and two mouse models of mtDNA dysfunction. CONCLUSIONS: Through the convergence of our results, we demonstrate translational evidence of systemic peripheral inflammation arising from MtD, predominantly through antiviral response gene sets. This provides key evidence linking mitochondrial dysfunction to inflammation, which may contribute to the pathogenesis of primary MtD and other chronic inflammatory disorders associated with mitochondrial dysfunction.


Asunto(s)
Interferones , Enfermedades Mitocondriales , Animales , Ratones , Interferones/genética , Transcriptoma/genética , Inflamación/genética , Inflamación/patología , Antivirales
12.
Res Sq ; 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36909538

RESUMEN

Background: People with mitochondrial disease (MtD) are susceptible to metabolic decompensation and neurological symptom progression in response to an infection. Increasing evidence suggests that mitochondrial dysfunction may cause chronic inflammation, which may promote hyperresponsiveness to pathogens and neurodegeneration. Methods: We collected whole blood from a cohort of MtD patients and healthy controls and performed RNAseq to examine transcriptomic differences. We performed GSEA analyses to compare our findings against existing studies to identify commonly dysregulated pathways. Results: Gene sets involved in inflammatory signaling, including type I interferons, interleukin-1ß and antiviral responses, are enriched in MtD patients compared to controls. Monocyte and dendritic cell gene clusters are also enriched in MtD patients, while T cell and B cell gene sets are negatively enriched. The enrichment of antiviral response corresponds with an independent set of MELAS patients, and two mouse models of mtDNA dysfunction. Conclusions: Through the convergence of our results, we demonstrate translational evidence of systemic peripheral inflammation arising from MtD, predominantly through antiviral response gene sets. This provides key evidence linking mitochondrial dysfunction to inflammation, which may contribute to the pathogenesis of primary MtD and other chronic inflammatory disorders associated with mitochondrial dysfunction.

13.
Elife ; 122023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36648132

RESUMEN

Background: Both sex and prior exposure to pathogens are known to influence responses to immune challenges, but their combined effects are not well established in humans, particularly in early innate responses critical for shaping subsequent outcomes. Methods: We employed systems immunology approaches to study responses to a replication-defective, herpes simplex virus (HSV) 2 vaccine in men and women either naive or previously exposed to HSV. Results: Blood transcriptomic and cell population profiling showed substantial changes on day 1 after vaccination, but the responses depended on sex and whether the vaccinee was naive or previously exposed to HSV. The magnitude of early transcriptional responses was greatest in HSV naive women where type I interferon (IFN) signatures were prominent and associated negatively with vaccine-induced neutralizing antibody titers, suggesting that a strong early antiviral response reduced the uptake of this replication-defective virus vaccine. While HSV seronegative vaccine recipients had upregulation of gene sets in type I IFN (IFN-α/ß) responses, HSV2 seropositive vaccine recipients tended to have responses focused more on type II IFN (IFN-γ) genes. Conclusions: These results together show that prior exposure and sex interact to shape early innate responses that then impact subsequent adaptive immune phenotypes. Funding: Intramural Research Program of the NIH, the National Institute of Allergy and Infectious Diseases, and other institutes supporting the Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation. The vaccine trial was supported through a clinical trial agreement between the National Institute of Allergy and Infectious Diseases and Sanofi Pasteur. Clinical trial number: NCT01915212.


Asunto(s)
Vacunas contra Herpesvirus , Inmunidad Innata , Factores Sexuales , Femenino , Humanos , Masculino , Anticuerpos Neutralizantes , Herpesvirus Humano 2 , Vacunas contra Herpesvirus/inmunología , Vacunas Atenuadas , Herpes Simple/prevención & control
14.
Nature ; 614(7949): 752-761, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36599369

RESUMEN

Acute viral infections can have durable functional impacts on the immune system long after recovery, but how they affect homeostatic immune states and responses to future perturbations remain poorly understood1-4. Here we use systems immunology approaches, including longitudinal multimodal single-cell analysis (surface proteins, transcriptome and V(D)J sequences) to comparatively assess baseline immune statuses and responses to influenza vaccination in 33 healthy individuals after recovery from mild, non-hospitalized COVID-19 (mean, 151 days after diagnosis) and 40 age- and sex-matched control individuals who had never had COVID-19. At the baseline and independent of time after COVID-19, recoverees had elevated T cell activation signatures and lower expression of innate immune genes including Toll-like receptors in monocytes. Male individuals who had recovered from COVID-19 had coordinately higher innate, influenza-specific plasmablast, and antibody responses after vaccination compared with healthy male individuals and female individuals who had recovered from COVID-19, in part because male recoverees had monocytes with higher IL-15 responses early after vaccination coupled with elevated prevaccination frequencies of 'virtual memory'-like CD8+ T cells poised to produce more IFNγ after IL-15 stimulation. Moreover, the expression of the repressed innate immune genes in monocytes increased by day 1 to day 28 after vaccination in recoverees, therefore moving towards the prevaccination baseline of the healthy control individuals. By contrast, these genes decreased on day 1 and returned to the baseline by day 28 in the control individuals. Our study reveals sex-dimorphic effects of previous mild COVID-19 and suggests that viral infections in humans can establish new immunological set-points that affect future immune responses in an antigen-agnostic manner.


Asunto(s)
COVID-19 , Inmunidad Innata , Memoria Inmunológica , Vacunas contra la Influenza , Caracteres Sexuales , Linfocitos T , Vacunación , Femenino , Humanos , Masculino , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Interleucina-15/inmunología , Receptores Toll-Like/inmunología , Linfocitos T/citología , Linfocitos T/inmunología , Monocitos , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Análisis de la Célula Individual , Voluntarios Sanos
15.
Nat Commun ; 14(1): 51, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599827

RESUMEN

Behavioural feedback is critical for learning in the cerebral cortex. However, such feedback is often not readily available. How the cerebral cortex learns efficiently despite the sparse nature of feedback remains unclear. Inspired by recent deep learning algorithms, we introduce a systems-level computational model of cerebro-cerebellar interactions. In this model a cerebral recurrent network receives feedback predictions from a cerebellar network, thereby decoupling learning in cerebral networks from future feedback. When trained in a simple sensorimotor task the model shows faster learning and reduced dysmetria-like behaviours, in line with the widely observed functional impact of the cerebellum. Next, we demonstrate that these results generalise to more complex motor and cognitive tasks. Finally, the model makes several experimentally testable predictions regarding cerebro-cerebellar task-specific representations over learning, task-specific benefits of cerebellar predictions and the differential impact of cerebellar and inferior olive lesions. Overall, our work offers a theoretical framework of cerebro-cerebellar networks as feedback decoupling machines.


Asunto(s)
Cerebelo , Corteza Cerebral , Retroalimentación , Núcleos Cerebelosos , Red Nerviosa
16.
Nat Immunol ; 24(1): 186-199, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36536106

RESUMEN

Most studies of adaptive immunity to SARS-CoV-2 infection focus on peripheral blood, which may not fully reflect immune responses at the site of infection. Using samples from 110 children undergoing tonsillectomy and adenoidectomy during the COVID-19 pandemic, we identified 24 samples with evidence of previous SARS-CoV-2 infection, including neutralizing antibodies in serum and SARS-CoV-2-specific germinal center and memory B cells in the tonsils and adenoids. Single-cell B cell receptor (BCR) sequencing indicated virus-specific BCRs were class-switched and somatically hypermutated, with overlapping clones in the two tissues. Expanded T cell clonotypes were found in tonsils, adenoids and blood post-COVID-19, some with CDR3 sequences identical to previously reported SARS-CoV-2-reactive T cell receptors (TCRs). Pharyngeal tissues from COVID-19-convalescent children showed persistent expansion of germinal center and antiviral lymphocyte populations associated with interferon (IFN)-γ-type responses, particularly in the adenoids, and viral RNA in both tissues. Our results provide evidence for persistent tissue-specific immunity to SARS-CoV-2 in the upper respiratory tract of children after infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Niño , Pandemias , Inmunidad Adaptativa , Tonsila Palatina , Anticuerpos Antivirales
17.
Cerebellum ; 22(5): 1002-1019, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36121552

RESUMEN

Given the importance of the cerebellum in controlling movements, it might be expected that its main role in eating would be the control of motor elements such as chewing and swallowing. Whilst such functions are clearly important, there is more to eating than these actions, and more to the cerebellum than motor control. This review will present evidence that the cerebellum contributes to homeostatic, motor, rewarding and affective aspects of food consumption.Prediction and feedback underlie many elements of eating, as food consumption is influenced by expectation. For example, circadian clocks cause hunger in anticipation of a meal, and food consumption causes feedback signals which induce satiety. Similarly, the sight and smell of food generate an expectation of what that food will taste like, and its actual taste will generate an internal reward value which will be compared to that expectation. Cerebellar learning is widely thought to involve feed-forward predictions to compare expected outcomes to sensory feedback. We therefore propose that the overarching role of the cerebellum in eating is to respond to prediction errors arising across the homeostatic, motor, cognitive, and affective domains.


Asunto(s)
Conducta Alimentaria , Hambre , Saciedad , Cerebelo , Aprendizaje , Ingestión de Alimentos
18.
J Physiol ; 600(23): 5077-5099, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36254104

RESUMEN

The cerebellum is the largest sensorimotor structure in the brain. A fundamental organizational feature of its cortex is its division into a series of rostrocaudally elongated zones. These are defined by their inputs from specific parts of the inferior olive and Purkinje cell output to specific cerebellar and vestibular nuclei. However, little is known about how patterns of neuronal activity in zones, and their microcircuit subdivisions, microzones, are related to behaviour in awake animals. In the present study, we investigated the organization of microzones within the C3 zone and their activity during a skilled forelimb reaching task in cats. Neurons in different microzones of the C3 zone, functionally determined by receptive field characteristics, differed in their patterns of activity during movement. Groups of Purkinje cells belonging to different receptive field classes, and therefore belonging to different microzones, were found to collectively encode different aspects of the reach controlled by the C3 zone. Our results support the hypothesis that the cerebellar C3 zone is organized and operates within a microzonal frame of reference, with a specific relationship between the sensory input to each microzone and its motor output. KEY POINTS: A defining feature of cerebellar organization is its division into a series of zones and smaller subunits termed microzones. Much of how zones and microzones are organized has been determined in anaesthetized preparations, and little is known about their function in awake animals. We recorded from neurons in the forelimb part of the C3 zone 'in action' by recording from single cerebellar cortical neurons located in different microzones defined by their peripheral receptive field properties during a forelimb reach-retrieval task in cats. Neurons from individual microzones had characteristic patterns of activity during movement, indicating that function is organized in relation to microcomplexes.


Asunto(s)
Corteza Cerebelosa , Células de Purkinje , Gatos , Animales , Corteza Cerebelosa/fisiología , Células de Purkinje/fisiología , Neuronas/fisiología , Núcleo Olivar/fisiología , Cerebelo/fisiología
19.
Front Syst Neurosci ; 16: 899446, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965995

RESUMEN

Essential Tremor (ET) is a common movement disorder, characterised by a posture or movement-related tremor of the upper limbs. Abnormalities within cerebellar circuits are thought to underlie the pathogenesis of ET, resulting in aberrant synchronous oscillatory activity within the thalamo-cortical network leading to tremors. Harmaline produces pathological oscillations within the cerebellum, and a tremor that phenotypically resembles ET. However, the neural network dynamics in cerebellar-thalamo-cortical circuits in harmaline-induced tremor remains unclear, including the way circuit interactions may be influenced by behavioural state. Here, we examined the effect of harmaline on cerebello-thalamo-cortical oscillations during rest and movement. EEG recordings from the sensorimotor cortex and local field potentials (LFP) from thalamic and medial cerebellar nuclei were simultaneously recorded in awake behaving rats, alongside measures of tremor using EMG and accelerometery. Analyses compared neural oscillations before and after systemic administration of harmaline (10 mg/kg, I.P), and coherence across periods when rats were resting vs. moving. During movement, harmaline increased the 9-15 Hz behavioural tremor amplitude and increased thalamic LFP coherence with tremor. Medial cerebellar nuclei and cerebellar vermis LFP coherence with tremor however remained unchanged from rest. These findings suggest harmaline-induced cerebellar oscillations are independent of behavioural state and associated changes in tremor amplitude. By contrast, thalamic oscillations are dependent on behavioural state and related changes in tremor amplitude. This study provides new insights into the role of cerebello-thalamo-cortical network interactions in tremor, whereby neural oscillations in thalamocortical, but not cerebellar circuits can be influenced by movement and/or behavioural tremor amplitude in the harmaline model.

20.
Ann Rheum Dis ; 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35914929

RESUMEN

OBJECTIVES: Premature cardiovascular events in systemic lupus erythematosus (SLE) contribute to morbidity and mortality, with no effective preventive strategies described to date. Immune dysregulation and metabolic disturbances appear to play prominent roles in the induction of vascular disease in SLE. The peroxisome proliferator activated receptor-gamma agonist pioglitazone (PGZ suppresses vascular damage and immune dysregulation in murine lupus and improves endothelial dysfunction in other inflammatory diseases. We hypothesised that PGZ could improve vascular dysfunction and cardiometabolic parameters in SLE. METHODS: Eighty SLE subjects with mild to severe disease activity were randomised to a sequence of PGZ followed by placebo for 3 months, or vice versa, in a double-blind, cross-over design with a 2-month wash-out period. Primary endpoints were parameters of endothelial function and arterial inflammation, measured by multimodal assessments. Additional outcome measures of disease activity, neutrophil dysregulation, metabolic disturbances and gene expression studies were performed. RESULTS: Seventy-two subjects completed the study. PGZ was associated with a significant reduction in Cardio-Ankle Vascular Index (a measure of arterial stiffness) compared with placebo. Various metabolic parameters improved with PGZ, including insulin resistance and lipoprotein profiles. Circulating neutrophil extracellular trap levels also significantly decreased with PGZ compared with placebo. Most adverse events experienced while on PGZ were mild and resolved with reduction in PGZ dose. CONCLUSION: PGZ was well tolerated and induced significant improvement in vascular stiffness and cardiometabolic parameters in SLE. The results suggest that PGZ should be further explored as a modulator of cardiovascular disease risk in SLE. TRIAL REGISTRATION NUMBER: NCT02338999.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...