Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 198, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38500032

RESUMEN

BACKGROUND: Energy canes are viable feedstocks for biomass industries due to their high biomass production potential, lower susceptibility to insects and diseases, better ability to adapt to extreme conditions and clean bioenergy. Interspecific hybrids (ISH) and intergeneric hybrids (IGH) have great potential to meet the growing demand of biomass, biomass-derived energy and feedstock. RESULTS: In this study, two types of energy canes, Type I and Type II, derived from S. spontaneum and E. arundinaceous background were evaluated for high biomass, fiber and bioenergy potential under subtropical climate along with the check varieties Co 0238 and CoS 767. Out of 18 energy canes studied, six energy canes, viz., SBIEC11008 (204.15 t/ha), SBIEC11005 (192.93 t/ha), SBIEC13008 (201.26 t/ha), SBIEC13009 (196.58 t/ha), SBIEC13002 (170.15 t/ha), and SBIEC13007 (173.76 t/ha), consistently outperformed the check varieties under Type-I, whereas in type-II, SBIEC11004 (225.78 t/ha), SBIEC11006 (184.89 t/ha), and SBIEC14006 (184.73 t/ha) energy canes produced significantly higher biomass than commercial checks, indicating their superior potential for cogeneration. Estimated energy output from the energy canes (700-1300 GJ/ha/year) exceeded the range of co-varieties (400-500 GJ/ha/year) and energy utilization efficiency in plants and ratoon crops for energy canes viz., SBIEC11008 (3%, 1.97%), SBIEC14006 (1.93%, 2.4%), SBIEC11005 (1.7%, 1.9%), and SBIEC11001 (1.01%, 1.03%), was higher than best checks Co 0238 (0.77, 0.9%). Additionally, energy canes SBIEC 13001 (22.35%), SBIEC 11008 (22.50%), SBIEC 14006 (28.54%), SBIEC 11004 (30.17%) and SBIEC 11001 (27.03%) had higher fiber contents than the co-varieties (12.45%). CONCLUSION: The study gives insight about the potential energy canes for higher biomass and energy value. These energy cane presents a vital option to meet the future demand of bioenergy, fiber and fodder for biomass due to their versatile capacity to grow easily under marginal lands without competing with cultivated land worldwide.


Asunto(s)
Saccharum , Biomasa
2.
Plant Physiol Biochem ; 206: 108310, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38169226

RESUMEN

Hybanthus enneaspermus (L.)F.Muell. is a highly indispensable medicinal herb yielding L-Dopa, deemed the gold standard drug among the therapeutic options for Parkinson's disease. This investigation is the first attempt to evaluate the eliciting influence of carboxylic acid functionalized multi-walled carbon nanotube (MWCNT-COOH) on the biosynthesis of L-Dopa and on biomass aggregation and antioxidant metabolites in H. enneaspermus cell suspension cultures. Suspension cells were accomplished from friable calli generated from the nodal segments of H. enneaspermus in Murashige and Skoog (MS) liquid medium infused with 2 mg L-1 2, 4-Dichlorophenoxyacetic acid (2, 4-D), and 0.3 mg L-1meta-Topolin (mT). The influence of MWCNTs on L-Dopa synthesis, biomass accumulation, and biochemical parameters was examined on the basis of the exposure time and in a concentration-dependent manner of MWCNTs. The inclusion of 30 mg L-1 MWCNTs increased the biomass and the L-Dopa level by 2.00 and 16.37-folds, respectively, compared with that of the control. Furthermore, the effect of MWCNTs on physiological parameters such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX), ascorbate peroxidase (APX), hydrogen peroxide (H2O2), malondialdehyde (MDA) content, 2-diphenylpicrylhydrazyl (DPPH), and ferric-reducing ability of plasma (FRAP) was examined over the elicited cells. Among the antioxidant enzymatic activities, CAT enhanced 8.0 fold compared with that of the control. MDA and DPPH content enhanced 2.60 and 1.12 folds, respectively, compared with that of the control. The current study showed that MWCNTs offer new possibilities for their usage over in vitro by acting as potential innovative plant metabolite elicitors and stress-protecting entities.


Asunto(s)
Nanotubos de Carbono , Violaceae , Antioxidantes/metabolismo , Levodopa , Peróxido de Hidrógeno/metabolismo , Violaceae/química , Violaceae/metabolismo
3.
3 Biotech ; 14(1): 24, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38162015

RESUMEN

Soil salinity and saline irrigation water are major constraints in sugarcane affecting the production of cane and sugar yield. To understand the salinity induced responses and to identify novel genomic resources, integrated de novo transcriptome and small RNA sequencing in sugarcane wild relative, Erianthus arundinaceus salt tolerant accession IND 99-907 and salt-sensitive sugarcane genotype Co 97010 were performed. A total of 362 known miRNAs belonging to 62 families and 353 miRNAs belonging to 63 families were abundant in IND 99-907 and Co 97010 respectively. The miRNA families such as miR156, miR160, miR166, miR167, miR169, miR171, miR395, miR399, miR437 and miR5568 were the most abundant with more than ten members in both genotypes. The differential expression analysis of miRNA reveals that 221 known miRNAs belonging to 48 families and 130 known miRNAs belonging to 42 families were differentially expressed in IND 99-907 and Co 97010 respectively. A total of 12,693 and 7982 miRNA targets against the monoploid mosaic genome and a total of 15,031 and 12,152 miRNA targets against the de novo transcriptome were identified for differentially expressed known miRNAs of IND 99-907 and Co 97010 respectively. The gene ontology (GO) enrichment analysis of the miRNA targets revealed that 24, 12 and 14 enriched GO terms (FDR < 0.05) for biological process, molecular function and cellular component respectively. These miRNAs have many targets that associated in regulation of biotic and abiotic stresses. Thus, the genomic resources generated through this study are useful for sugarcane crop improvement through biotechnological and advanced breeding approaches. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03867-7.

4.
Plants (Basel) ; 12(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37960116

RESUMEN

Phosphorus deficiency highly interferes with plant growth and development. Plants respond to persistent P deficiency by coordinating the expression of genes involved in the alleviation of stress. Promoters of phosphate transporter genes are a great choice for the development of genetically modified plants with enhanced phosphate uptake abilities, which improve crop yields in phosphate-deficient soils. In our previous study, the sugarcane phosphate transporter PHT1;2 gene showed a significantly high expression under salinity stress. In this study, the Erianthus arundinaceus EaPHT1;2 gene was isolated and characterized using various in silico tools. The deduced 542 amino acid residues have 10 transmembrane domains, with a molecular weight and isoelectric point of 58.9 kDa and 9.80, respectively. They displayed 71-96% similarity with Arabidopsis thaliana, Zea mays, and the Saccharum hybrid. To elucidate the function of the 5' regulatory region, the 1.1 kb promoter was isolated and validated in tobacco transgenics under Pi stress. The EaPHT1;2 promoter activity was detected using a ß-glucuronidase (GUS) assay. The EaPHT1;2 promoter showed 3- to 4.2-fold higher expression than the most widely used CaMV35S promoter. The 5' deletion analysis with and without 5' UTRs revealed a small-sized 374 bp fragment with the highest promoter activity among 5' truncated fragments, which was 2.7 and 4.2 times higher than the well-used CaMV35S promoter under normal and Pi deprivation conditions, respectively. The strong and short promoter of EaPHT1;2 with 374 bp showed significant expression in low-Pi-stress conditions and it could be a valuable source for the development of stress-tolerant transgenic crops.

5.
3 Biotech ; 13(9): 293, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37547916

RESUMEN

The present study is an attempt to establish a fast, highly reproducible transformation with a simplified regeneration system in soybean targeting the apical meristem. The modified half-seed explants from soybean cultivar (cv.) JS335 were subjected to different time intervals of sonication (0, 1, 10, 20, and 30 min) and vacuum infiltration (0, 1, 10, 20, and 30 min) in the presence of Agrobacterium tumefaciens strain EHA105 harbouring pCAMBIA1301. The explants were then co-cultivated and subjected to a modified plant regeneration process that involves only two steps (1) primary shoot regeneration, and (2) in vitro rooting of primary shoot. The rooted plantlets were hardened and maintained in the greenhouse until maturity. Sonication treatment of 10 min, followed by plant regeneration using a modified method, recorded the highest transformation efficiency of 26.3% compared to other time duration tested. Furthermore, 10 min of vacuum infiltration alone resulted in even higher transformation efficiency after regeneration, reaching 28.0%. Interestingly, coupling sonication and vacuum infiltration for 10 min respectively produced the highest transformation efficiency after regeneration of 38.0%. The putative transformants showed gus expression in mature leaves, trifoliate leaves, flowers, and pods. The presence of hpt II was also confirmed in putative transformants, with an amplicon size of 500 bp. Quantitative real-time PCR confirmed the existence of hpt II as one to two copies in the soybean genome of T0 plants. Furthermore, the segregation pattern was observed in the T1 generation soybean plants which were confirmed using PCR for hpt II. The optimized protocol when tested with other Indian soybean cultivars showed an enhanced transformation efficiency ranging from 19.3% (cv. MAUS47) to 36.5% (cv. CO1). This optimized protocol could provide a reliable platform to overcome the challenges that are associated with the genetic engineering of soybean. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03715-8.

6.
Plant Physiol Biochem ; 201: 107881, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37437344

RESUMEN

The present study aims to investigate the impact of externally applied stevioside (a sugar-based glycoside) on soybean root growth by examining morpho-physiological characteristics, biochemical parameters, and gene expression. Soybean seedlings (10-day-old) were treated with stevioside (0, 8.0 µM, 24.5 µM, and 40.5 µM) for four times at six days' intervals by soil drenching. Treatment with 24.5 µM stevioside significantly increased root length (29.18 cm plant-1), root numbers (38.5 plant-1), root biomass (0.95 g plant-1 FW; 0.18 g plant-1 DW), shoot length (30.96 cm plant-1), and shoot biomass (2.14 g plant-1 FW; 0.36 g plant-1 DW) compared to the control. Moreover, 24.5 µM of stevioside was effective in enhancing photosynthetic pigments, leaf relative water content, and antioxidant enzymes compared to control. Conversely, plants exposed to a higher concentration of stevioside (40.5 µM), elevated total polyphenolic content, total flavonoid content, DPPH activity, total soluble sugars, reducing sugars, and proline content. Furthermore, gene expression of root growth development-related genes such as GmYUC2a, GmAUX2, GmPIN1A, GmABI5, GmPIF, GmSLR1, and GmLBD14 in stevioside-treated soybean plants were evaluated. Stevioside (8.0 µM) showed significant expression of GmPIN1A, whereas, 40.5 µM of stevioside enhanced GmABI5 expression. In contrast, most of the root growth development genes such as GmYUC2a, GmAUX2, GmPIF, GmSLR1, and GmLBD14, were highly expressed at 24.5 µM of stevioside treatment. Taken together, our results demonstrate the potential of stevioside in improving morpho-physiological traits, biochemical status, and the expression of root development genes in soybean. Hence, stevioside could be used as a supplement to enhance plant performance.


Asunto(s)
Glycine max , Raíces de Plantas , Glycine max/metabolismo , Raíces de Plantas/metabolismo , Antioxidantes/metabolismo , Azúcares/metabolismo
7.
Genes (Basel) ; 14(6)2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37372327

RESUMEN

Plant nuclear factor (NF-Y) is a transcriptional activating factor composed of three subfamilies: NF-YA, NF-YB, and NF-YC. These transcriptional factors are reported to function as activators, suppressors, and regulators under different developmental and stress conditions in plants. However, there is a lack of systematic research on the NF-Y gene subfamily in sugarcane. In this study, 51 NF-Y genes (ShNF-Y), composed of 9 NF-YA, 18 NF-YB, and 24 NF-YC genes, were identified in sugarcane (Saccharum spp.). Chromosomal distribution analysis of ShNF-Ys in a Saccharum hybrid located the NF-Y genes on all 10 chromosomes. Multiple sequence alignment (MSA) of ShNF-Y proteins revealed conservation of core functional domains. Sixteen orthologous gene pairs were identified between sugarcane and sorghum. Phylogenetic analysis of NF-Y subunits of sugarcane, sorghum, and Arabidopsis showed that ShNF-YA subunits were equidistant while ShNF-YB and ShNF-YC subunits clustered distinctly, forming closely related and divergent groups. Expression profiling under drought treatment showed that NF-Y gene members were involved in drought tolerance in a Saccharum hybrid and its drought-tolerant wild relative, Erianthus arundinaceus. ShNF-YA5 and ShNF-YB2 genes had significantly higher expression in the root and leaf tissues of both plant species. Similarly, ShNF-YC9 had elevated expression in the leaf and root of E. arundinaceus and in the leaf of a Saccharum hybrid. These results provide valuable genetic resources for further sugarcane crop improvement programs.


Asunto(s)
Saccharum , Saccharum/genética , Saccharum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Genoma de Planta , Factores de Transcripción/genética
8.
Front Genet ; 13: 854936, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991570

RESUMEN

Advances in sugarcane breeding have contributed significantly to improvements in agronomic traits and crop yield. However, the growing global demand for sugar and biofuel in the context of climate change requires further improvements in cane and sugar yields. Attempts to achieve the desired rates of genetic gain in sugarcane by conventional breeding means are difficult as many agronomic traits are genetically complex and polygenic, with each gene exerting small effects. Unlike those of many other crops, the sugarcane genome is highly heterozygous due to its autopolyploid nature, which further hinders the development of a comprehensive genetic map. Despite these limitations, many superior agronomic traits/genes for higher cane yield, sugar production, and disease/pest resistance have been identified through the mapping of quantitative trait loci, genome-wide association studies, and transcriptome approaches. Improvements in traits controlled by one or two loci are relatively easy to achieve; however, this is not the case for traits governed by many genes. Many desirable phenotypic traits are controlled by quantitative trait nucleotides (QTNs) with small and variable effects. Assembling these desired QTNs by conventional breeding methods is time consuming and inefficient due to genetic drift. However, recent developments in genomics selection (GS) have allowed sugarcane researchers to select and accumulate desirable alleles imparting superior traits as GS is based on genomic estimated breeding values, which substantially increases the selection efficiency and genetic gain in sugarcane breeding programs. Next-generation sequencing techniques coupled with genome-editing technologies have provided new vistas in harnessing the sugarcane genome to look for desirable agronomic traits such as erect canopy, leaf angle, prolonged greening, high biomass, deep root system, and the non-flowering nature of the crop. Many desirable cane-yielding traits, such as single cane weight, numbers of tillers, numbers of millable canes, as well as cane quality traits, such as sucrose and sugar yield, have been explored using these recent biotechnological tools. This review will focus on the recent advances in sugarcane genomics related to genetic gain and the identification of favorable alleles for superior agronomic traits for further utilization in sugarcane breeding programs.

9.
Front Plant Sci ; 12: 708233, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646284

RESUMEN

Sugarcane is a C4 and agro-industry-based crop with a high potential for biomass production. It serves as raw material for the production of sugar, ethanol, and electricity. Modern sugarcane varieties are derived from the interspecific and intergeneric hybridization between Saccharum officinarum, Saccharum spontaneum, and other wild relatives. Sugarcane breeding programmes are broadly categorized into germplasm collection and characterization, pre-breeding and genetic base-broadening, and varietal development programmes. The varietal identification through the classic breeding programme requires a minimum of 12-14 years. The precise phenotyping in sugarcane is extremely tedious due to the high propensity of lodging and suckering owing to the influence of environmental factors and crop management practices. This kind of phenotyping requires data from both plant crop and ratoon experiments conducted over locations and seasons. In this review, we explored the feasibility of genomic selection schemes for various breeding programmes in sugarcane. The genetic diversity analysis using genome-wide markers helps in the formation of core set germplasm representing the total genomic diversity present in the Saccharum gene bank. The genome-wide association studies and genomic prediction in the Saccharum gene bank are helpful to identify the complete genomic resources for cane yield, commercial cane sugar, tolerances to biotic and abiotic stresses, and other agronomic traits. The implementation of genomic selection in pre-breeding, genetic base-broadening programmes assist in precise introgression of specific genes and recurrent selection schemes enhance the higher frequency of favorable alleles in the population with a considerable reduction in breeding cycles and population size. The integration of environmental covariates and genomic prediction in multi-environment trials assists in the prediction of varietal performance for different agro-climatic zones. This review also directed its focus on enhancing the genetic gain over time, cost, and resource allocation at various stages of breeding programmes.

10.
BMC Genomics ; 19(Suppl 9): 986, 2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-30999852

RESUMEN

BACKGROUND: Glyoxalase pathway is a reactive carbonyl species (RCS) scavenging mechanism involved in the detoxification of methylglyoxal (MG), which is a reactive α-ketoaldehyde. In plants under abiotic stress, the cellular toxicity is reduced through glyoxalase pathway genes, i.e. Glyoxalase I (Gly I), Glyoxalase II (Gly II) and Glyoxalase III (Gly III). Salinity and water deficit stresses produce higher amounts of endogenous MG resulting in severe tissue damage. Thus, characterizing glyoxalase pathway genes that govern the MG metabolism should provide new insights on abiotic stress tolerance in Erianthus arundinaceus, a wild relative of sugarcane and commercial sugarcane hybrid (Co 86032). RESULTS: In this study, three glyoxalase genes (Glyoxalase I, II and III) from E. arundinaceus (a wild relative of sugarcane) and commercial sugarcane hybrid (Co 86032) were characterized. Comparative gene expression profiles (qRT-PCR) of Glyoxalase I, II and III under salinity and water deficit stress conditions revealed differential transcript expression with higher levels of Glyoxalase III in both the stress conditions. Significantly, E. arundinaceus had a higher expression level of glyoxalase genes compared to commercial sugarcane hybrid. On the other hand, gas exchange parameters like stomatal conductance and transpiration rate were declined to very low levels under both salt and drought induced stresses in commercial sugarcane hybrid when compared to E. arundinaceus. E. arundinaceus maintained better net photosynthetic rate compared to commercial sugarcane hybrid. The phylogenetic analysis of glyoxalase proteins showed its close evolutionary relationship with Sorghum bicolor and Zea mays. Glyoxalase I and II were predicted to possess 9 and 7 isoforms respectively whereas, Glyoxalase III couldn't be identified as it comes under uncharacterized protein identified in recent past. Chromosomal mapping is also carried out for glyoxalase pathway genes and its isoforms. Docking studies revealed the binding affinities of glyoxalase proteins in both E. arundinaceus and commercial sugarcane hybrid with their substrate molecules. CONCLUSIONS: This study emphasizes the role of Glyoxalase pathway genes in stress defensive mechanism which route to benefit in progressive plant adaptations and serves as potential candidates for development of salt and drought tolerant crops.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Lactoilglutatión Liasa/genética , Proteínas de Plantas/genética , Saccharum/genética , Salinidad , Transducción de Señal , Adaptación Fisiológica , Cromosomas de las Plantas , Biología Computacional , Perfilación de la Expresión Génica , Saccharum/clasificación , Saccharum/enzimología , Saccharum/fisiología
11.
Curr Microbiol ; 62(4): 1230-8, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21188591

RESUMEN

Horsegram [Macrotyloma uniflorum (Lam.) Verdc.) is an important grain legume and fodder crop in India. Information on root nodule endosymbionts of this legume in India is limited. In the present study, 69 isolates from naturally occurring root nodules of horsegram collected from two agro-eco-climatic regions of South India was analyzed by generation rate, acid/alkali reaction on YMA medium, restriction fragment length polymorphism analysis of 16S-23S rDNA intergenic spacer region (IGS), and sequence analyses of IGS and housekeeping genes glnII and recA. Based on the rDNA IGS RFLP by means of three restriction enzymes rhizobia were grouped in five clusters (I-V). By sequence analysis of 16S-23S rDNA IGS identified genotypes of horsegram rhizobia were distributed into five divergent lineages of Bradyrhizobium genus which comprised (I) the IGS type IV rhizobia and valid species B. yuanmingense, (II) the strains of IGS type I and Bradyrhizobium sp. ORS 3257 isolated from Vigna sp., (III) the strains of the IGS type II and Bradyrhizobium sp. CIRADAc12 from Acacia sp., (IV) the IGS type V strains and Bradyrhizobium sp. genospecies IV, and (V) comprising genetically distinct IGS type III strains which probably represent an uncharacterized new genomic species. Nearly, 87% of indigenous horsegram isolates (IGS types I, II, III, and V) could not be related to any other species within the genus Bradyrhizobium. Phylogeny based on housekeeping glnII and recA genes confirmed those results found by the analysis of the IGS sequence. All the isolated rhizobia nodulated Macrotyloma sp. and Vigna spp., and only some of them formed nodules on Arachis hypogeae. The isolates within each IGS type varied in their ability to fix nitrogen. Selection for high symbiotic effective strains could reward horsegram production in poor soils of South India where this legume is largely cultivated.


Asunto(s)
Proteínas Bacterianas/genética , Biodiversidad , Bradyrhizobium/clasificación , Bradyrhizobium/aislamiento & purificación , ADN Intergénico/genética , Fabaceae/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Bradyrhizobium/genética , ADN Bacteriano/genética , India , Datos de Secuencia Molecular , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética
12.
Syst Appl Microbiol ; 32(7): 460-70, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19541444

RESUMEN

Vigna mungo, Vigna radiata and Vigna unguiculata are important legume crops cultivated in India, but little is known about the genetic resources in native rhizobia that nodulate these species. To identify these bacteria, a core collection of 76 slow-growing isolates was built from root nodules of V. mungo, V. radiata and V. unguiculata plants grown at different sites within three agro-ecological-climatic regions of India. The genetic diversity of the bacterial collection was assessed by restriction fragment length polymorphism (RFLP) analysis of PCR-amplified DNA fragments of the 16S-23S rDNA intergenic spacer (IGS) region, and the symbiotic genes nifH and nodC. One rDNA IGS type grouped 91% of isolates, but more diversity was found at the symbiotic loci (17 symbiotic genotypes). Overall, no host plant specificity was shown, the three host plant species sharing common bradyrhizobial genotypes that represented 62% of the collection. Similarly, the predominant genotypes were found at most sampling sites and in all agro-ecological-climatic regions. Phylogenies inferred from IGS sequencing and multi-locus sequence analysis of the dnaK, glnII and recA genes indicated that all isolates but one were clustered with the Bradyrhizobium yuanmingense species. The nifH phylogeny also grouped the different nif haplotypes within a cluster including B. yuanmingense, except for one infrequent nif haplotype which formed a new lineage within the Bradyrhizobium genus. These results may reflect a long history of co-evolution between B. yuanmingense and Vigna spp. in India, while intra-species polymorphism detected in the symbiotic loci may be linked with the long history of diversification of B. yuanmingense coinciding with that of its host legumes.


Asunto(s)
Bradyrhizobium/clasificación , Bradyrhizobium/fisiología , Fabaceae/microbiología , Fabaceae/fisiología , Nodulación de la Raíz de la Planta , Nódulos de las Raíces de las Plantas/microbiología , Proteínas Bacterianas/genética , Bradyrhizobium/genética , Bradyrhizobium/aislamiento & purificación , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , India , Datos de Secuencia Molecular , N-Acetilglucosaminiltransferasas/genética , Oxidorreductasas/genética , Filogenia , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Análisis de Secuencia de ADN
13.
Appl Environ Microbiol ; 74(19): 5991-6, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18676699

RESUMEN

Fifty isolates from root nodules of soybean plants sampled in five agricultural-ecological-climatic regions of India were analyzed by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene, the intergenic spacer region between the 16S and 23S rRNA genes (IGS), and the nifH and nodC genes. Eight haplotypes assigned to the Bradyrhizobium genus were identified, and the genetic diversity was conserved across regions. Sequence analyses of the IGS and the dnaK, glnII, recA, and nifH genes revealed three groups. One of them (26% of isolates) was assigned to Bradyrhizobium liaoningense. A second group (36% of isolates) was identified as B. yuanmingense but likely forms a new biovar able to nodulate soybean plants. The third lineage (38% of isolates) was different from all described Bradyrhizobium species but showed the same symbiotic genotype as B. liaoningense and B. japonicum bv. glycinearum.


Asunto(s)
Bradyrhizobium/clasificación , Bradyrhizobium/aislamiento & purificación , Variación Genética , Glycine max/microbiología , Proteínas Bacterianas/genética , Bradyrhizobium/genética , Clima , Análisis por Conglomerados , Dermatoglifia del ADN , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico , Ecosistema , Genes de ARNr , Genotipo , Geografía , India , Datos de Secuencia Molecular , N-Acetilglucosaminiltransferasas/genética , Oxidorreductasas/genética , Filogenia , Raíces de Plantas/microbiología , Polimorfismo de Longitud del Fragmento de Restricción , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
14.
J Microbiol ; 44(3): 363-8, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16820768

RESUMEN

In this study, native Bradyrhizobium strains were isolated from the host plant, Glycine max, harvested from fields in Madhya Pradesh, India, and were typed by lytic rhizobiophages. Eight indigenous (Soy2, ASR011, ASR031, ASR032, MSR091, ISR050, ISR076 and ISR078) and two exotic strains (USDA123 and CB1809), all of which evidenced a distinct reaction with six phages, were employed in this study. The symbiotic interaction of these strains was studied initially using soybean cultivar JS335 in a sand culture in a controlled environment, and the efficiency was assessed based on the nodule number, nodule dry weight, plant dry weight, nitrogenase activity, and total accumulation of N per plant. Symbiotic effectiveness was found to be highest with the native phage-sensitive isolate ASR011, whereas it was at a minimum with the phage-resistant isolates, ISR050 and ISR078. Additionally, the effectiveness of these strains was evaluated using six soybean cultivars belonging to different maturity groups; namely, Bragg, Lee, Pusa20, PK416, JS335 and NRC37. Analysis of variance data evidenced significant differences due to both symbionts, for the majority of the tested parameters. The CB1809, USDA123, and ASR011 strains evidenced relatively superior symbiotic effectiveness with soybean cultivars Bragg, Lee and JS335. Strain ISR078 evidenced no significant responses with any of the cultivars. The ASR031 strain performed moderately well with all tested cultivars. The symbiotic response of all the strains was quite poor with cultivar PK416. Our studies showed that a significant relationship existed between the phage sensitivity and symbiotic efficiency of the bacterial strains with the host-cultivars.


Asunto(s)
Tipificación de Bacteriófagos , Bradyrhizobium/clasificación , Glycine max/microbiología , Simbiosis , Bacteriófagos/fisiología , Bradyrhizobium/virología , Fijación del Nitrógeno , Raíces de Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...