Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 931: 172687, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38663593

RESUMEN

The ever-growing demand for aquaculture has led the industry to seek novel approaches for more sustainable practices. These attempts aim to increase aquaculture yield by increasing energy efficiency and decreasing footprint and chemical demand without compromising animal health. For this, emerging nanobubbles (NBs) aeration technology gained attention. NBs are gas-filled pockets suspended as sphere-like cavities (bulk NBs) or attached to surfaces (surface NBs) with diameters of <1 µm. Compared to macro and microbubbles, NBs have demonstrated unique characteristics such as long residence times in water, higher gas mass transfer efficiency, and hydroxyl radical production. This paper focuses on reviewing NB technology in aquaculture systems by summarizing and discussing uses and implications. Three focus areas were targeted to review the applicability and effects of NBs in aquaculture: (i) NBs aeration to improve the aquaculture harvest yield and subsequent wastewater treatment; (ii) NB application for inactivation of harmful microorganisms; and (iii) NBs for reducing oxidative stress and improving animal health. Thus, this study reviews the research studies published in the last 10 years in which air, oxygen, ozone, and hydrogen NBs were tested to improve gas mass transfer, wastewater treatment, and control of pathogenic microorganisms. The experimental results indicated that air and oxygen NBs yield significantly higher productivity, growth rate, total harvest, survival rate, and less oxygen consumption in fish and shrimp farming. Secondly, the application of air and ozone NBs demonstrated the ability of efficient pollutant degradation. Third, NB application demonstrated effective control of infectious bacteria and viruses, and thus increased fish survival, as well as different gene expression patterns that induce immune responses to infections. Reviewed studies lack robust comparative analyses of the efficacy of macro- and microbubble treatments. Also, potential health and safety implications, as well as economic feasibility through factors such as changes in capital infrastructure, routine maintenance and energy consumption need to be considered and evaluated in parallel to applicability. Therefore, even with a promising future, further studies are needed to confirm the benefits of NB treatment versus conventional aquaculture practices.


Asunto(s)
Acuicultura , Aguas Residuales , Acuicultura/métodos , Animales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Microburbujas , Purificación del Agua/métodos
2.
Small ; 20(3): e2304547, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37621039

RESUMEN

The electrogeneration of hydrogen peroxide (H2 O2 ) via the oxygen reduction reaction is a crucial process for advanced water treatment technologies. While significant effort is being devoted to developing highly reactive materials, gas provision systems used in these processes are receiving less attention. Here, using oxygen nanobubbles to improve the gas efficiency of the electrogeneration of H2 O2 is proposed. Aeration with nanobubbles is compared to aeration with macrobubbles under an identical experimental set-up, with nanobubbles showing a much higher gas-liquid volumetric mass transfer coefficient (KL a) of 2.6 × 10-2 min-1 compared to 2.7 × 10-4 min-1 for macrobubbles. Consequently, nanobubbles exhibit a much higher gas efficiency using 60% of O2 delivered to the system compared to 0.19% for macrobubbles. Further, it is observed that the electrogeneration of H2 O2 using carbon felt electrodes is enhanced using nanobubbles. Under the same dissolved oxygen levels, nanobubbles boost the reaction yield to 84%, while macrobubbles yield only 53.8%. To the authors' knowledge, this is the first study to investigate the use of nanobubbles in electrochemical reactions and demonstrate their ability to enhance gas efficiency and electrocatalytic response. These findings have important implications for developing more efficient chemical and electrochemical processes operating under gas-starving systems.

4.
J Hazard Mater ; 460: 132378, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37643572

RESUMEN

We assessed the competitive adsorption between long-chain and short-chain PFAS and the impact of coexisting ions to understand the mechanisms leading to the early breakthrough of short-chain PFAS from granular activated carbon (GAC) filters. Three pairs of short-chain and long-chain PFAS representing different functional groups were studied using GAC (Filtrasorb 400) in batch systems. In bisolute systems, the presence of long-chain PFAS decreased the adsorption of short-chain PFAS by 30-50% compared to their single solute adsorption capacity (0.22-0.31 mmol/g). In contrast to the partial decrease observed in bisolute systems, the addition of long-chain PFAS to GAC pre-equilibrated with short-chain PFAS completely desorbed all short-chain PFAS from GAC. This suggested that the outermost adsorption sites on GAC were preferentially occupied by short-chain PFAS in the absence of competition but were prone to displacement by long-chain PFAS. The presence of inorganic/organic ions inhibited the adsorption of short-chain PFAS (up to 60%) but had little to no impact on long-chain PFAS, with the inhibitory trend inversely correlated with Kow values. Study results indicated that the displacement of short-chain PFAS by long-chain PFAS and charge neutralization are important mechanisms contributing to the early breakthrough of short-chain PFAS from GAC systems.

5.
Environ Sci Technol ; 57(33): 12191-12200, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37550081

RESUMEN

Wastewater treatment plants are critical for environmental pollution control. The role that they play in protecting the environment and public health is unquestionable; however, they produce massive quantities of excess sludge as a byproduct. One pragmatic approach to utilizing excess sludge is generating methane via anaerobic digestion. For this, a prehydrolysis step can significantly improve digestion by increasing biogas quality and quantity while decreasing final sludge volumes. One of the many prehydrolysis approaches is to deliver heat into sludge via microwave irradiation. Microwave-absorbing additives can be used to further enhance thermal degradation processes. However, the implications of such an approach include potential release of said additive materials into the environment via digested sludge. In this perspective, we present and discuss the potential of superparamagnetic iron oxide nanoparticles (SPIONs) as recoverable, hyperreactive microwave absorbers for sludge prehydrolysis. Due to their size and characteristics, SPIONs pack spin electrons within a single domain that can respond to the magnetic field without remanence magnetism. SPIONs have properties of both paramagnetic and ferromagnetic materials with little to no magnetic hysteresis, which can enable their rapid recovery from slurries, even in complicated reactor installations. Further, SPIONs are excellent microwave absorbers, which result in high local heat gradients. This perspective introduces the vision that SPION properties can be tuned for desirable dielectric heating and magnetic responses while maintaining material integrity to accomplish repeated use for microwave-enhanced pretreatment.


Asunto(s)
Microondas , Aguas del Alcantarillado , Nanopartículas Magnéticas de Óxido de Hierro , Calor , Contaminación Ambiental , Metano , Anaerobiosis
6.
Biointerphases ; 18(4)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37602771

RESUMEN

This article discusses the challenges and potential solutions for managing wastewater sludge that contains per- and polyfluoroalkyl substances (PFAS), using the experience in Maine as a guide toward addressing the issue nationally. Traditional wastewater treatment, designed to remove excess organic waste and nutrients, does not eliminate persistent toxic pollutants like PFAS, instead partitioning the chemicals between discharged effluent and the remaining solids in sludge. PFAS chemistry, the molecular size, the alkyl chain length, fluorine saturation, the charge of the head group, and the composition of the surrounding matrix influence PFAS partitioning between soil and water. Land application of sludge, incineration, and storage in a landfill are the traditional management options. Land application of Class B sludge on agricultural fields in Maine peaked in the 1990s, totaling over 2 × 106 cu yd over a 40-year period and has contaminated certain food crops and animal forage, posing a threat to the food supply and the environment. Additional Class A EQ (Exceptional Quality) composted sludge was also applied to Maine farmland. The State of Maine banned the land application of wastewater sludge in August 2022. Most sludge was sent to the state-owned Juniper Ridge Landfill, which accepted 94 270 tons of dewatered sludge in 2022, a 14% increase over 2019. Between 2019 and 2022, the sum of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) concentrations in sludge sent to the landfill ranged from 1.2 to 104.9 ng/g dw. In 2022, the landfill generated 71.6 × 106 l of leachate. The concentration of sum of six PFAS in the leachate increased sixfold between 2021 and 2022, reaching 2 441 ng/l. The retention of PFAS within solid-waste landfills and the potential for long-term release of PFAS through liners into groundwater require ongoing monitoring. Thermal treatment, incineration, or pyrolysis can theoretically mineralize PFAS at high temperatures, yet the strong C-F bond and reactivity of fluorine require extreme temperatures for complete mineralization. Future alternatives may include interim options such as preconditioning PFAS with nonpolar solvents prior to immobilization in landfills, removing PFAS from leachate, and interrupting the cycle of PFAS moving from landfill, via leachate, to wastewater treatment, and then back to the landfill via sludge. Long-term solutions may involve destructive technologies such as electron beam irradiation, electrochemical advanced oxidation, or hydrothermal liquefaction. The article highlights the need for innovative and sustainable solutions for managing PFAS-contaminated wastewater sludge.


Asunto(s)
Fluorocarburos , Aguas del Alcantarillado , Animales , Alcanos/química , Flúor , Maine , Aguas Residuales
7.
Chemosphere ; 330: 138711, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37076084

RESUMEN

Bromide forms toxic brominated disinfection by-products during disinfection. Current bromide removal technologies are often non-specific and costly due to naturally occurring competing anions. A silver-impregnated graphene oxide (GO) nanocomposite is reported here that reduced the amount of Ag needed for Br- removal by increasing its selectivity towards Br-. GO was impregnated with ionic (GO-Ag+) or nanoparticulate Ag (GO-nAg) and compared against Ag+ or unsupported nAg to identify molecular level interactions. In nanopure water, Ag+ and nAg had the highest Br- removal (∼0.89 mol Br-/mol Ag+) followed by GO-nAg at 0.77 mol Br-/mol Ag+. However, under anionic competition, the Ag+ removal was reduced to 0.10 mol Br-/mol Ag+ while all nAg forms retained good Br- removal. To understand the removal mechanism, anoxic experiments were performed to prevent nAg dissolution, which resulted in higher Br- removal for all nAg forms compared to oxic conditions. This suggests that reaction of Br- with the nAg surface is more selective than with Ag+. Finally, jar tests showed that anchoring nAg on GO enhances Ag removal during coagulation/flocculation/sedimentation compared to unsupported nAg or Ag+. Thus, our results identify strategies that can be used to design selective and silver-efficient adsorbents for Br- removal in water treatment.


Asunto(s)
Grafito , Nanopartículas del Metal , Nanocompuestos , Contaminantes Químicos del Agua , Bromuros , Plata , Contaminantes Químicos del Agua/análisis
8.
Sci Total Environ ; 860: 160524, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36574542

RESUMEN

Microplastics (MPs) could act as vectors of organic pollutants such as per- and polyfluoroalkyl substances (PFAS). Therefore, understanding adsorptive interactions are essential steps towards unraveling the fate of PFAS in the natural waters where MPs are ubiquitous. Linear solvation energy relationships (LSER)-based predictive models are utilitarian tools to delineate the complexity of adsorption interactions. However, commonly studied PFAS are in their ionic forms at environmentally relevant conditions and LSER modeling parameters do not account for their ionization. This study aims to develop the first LSER model for the adsorption of PFAS by MPs using a subset of ionizable perfluoroalkyl carboxylic acids (PFCA). The adsorption of twelve PFCAs by polystyrene (PS) MPs was used for model training. The study provided mechanistic insights regarding the impacts of PFCA chain length, PS oxidation state, and water chemistry. Results show that the polarizability and hydrophobicity of anionic PFCA are the most significant contributors to their adsorption by MPs. In contrast, van der Waals interactions between PFCA and water significantly decrease PFCA binding affinity. Overall, LSER is demonstrated as a promising approach for predicting the adsorption of ionizable PFAS by MPs after the correction of Abraham's solute descriptors to account for their ionization.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Microplásticos , Plásticos , Adsorción , Poliestirenos , Ácidos Carboxílicos , Agua
9.
Environ Sci (Camb) ; 9(2): 363-374, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38260005

RESUMEN

Microplastics in the aquatic system are among the many inevitable consequences of plastic pollution, which has cascading environmental and public health impacts. Our study aimed at analyzing surface interactions and leachate production of six microplastics under ultraviolet (UV) irradiation. Leachate production was analyzed for the dissolved organic content (DOC), UV254, and fluorescence through excitation emission (EEM) to determine the kinetics and mechanisms involved in the release of organic matter by UV irradiation. The results suggested there was a clear trend of organic matter being released from the surface of the six microplastics caused by UV irradiation based on DOC, UV254 absorbance, and EEM intensity increasing with time. Polystyrene had the greatest and fastest increase in DOC concentrations, followed by the resin coated polystyrene. Experiments conducted at different temperatures indicated the endothermic nature of these leaching mechanisms. The differences in leachate formation for different polymers were attributed to their chemical makeup and their potency to interact with UV. The aged microplastic samples were analyzed by Fourier-transform infrared spectroscopy (FT-IR), Raman, and X-ray photoelectron spectroscopy (XPS), to determine the surface changes with respect to leachate formation. Results indicated that all microplastics had increasing carbonyl indices when aged by UV with polystyrene being the greatest. These findings affirm that the leachate formation is an interfacial interaction and could be a significant source of organic compound influx to natural waters due to the extremely abundant occurrence of microplastics and their large surface areas.

10.
J Hazard Mater ; 433: 128770, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35364529

RESUMEN

Field-weathered crude oil-containing soils have a residual concentration of hydrocarbons with complex chemical structure, low solubility, and high viscosity, often poorly amenable to microbial degradation. Hydrogen peroxide (H2O2)-based oxidation can generate oxygenated compounds that are smaller and/or more soluble and thus increase petroleum hydrocarbon biodegradability. In this study, we assessed the efficacy of H2O2-based oxidation under unsaturated soil conditions to promote biodegradation in a field-contaminated and weathered soil containing high concentrations of total petroleum hydrocarbons (25200 mg TPH kg-1) and total organic carbon (80900 mg TOC kg-1). Microcosms amended with three doses of 48 g H2O2 kg-1 soil (unactivated or Fe2+-activated) or 24 g sodium percarbonate kg-1 soil and nutrients did not show substantial TPH changes during the experiment. However, 7.6-41.8% of the TOC concentration was removed. Furthermore, production of DOC was enhanced and highest in the microcosms with oxidants, with approximately 20-40-fold DOC increase by the end of incubation. In the absence of oxidants, biostimulation led to > 50% TPH removal in 42 days. Oxidants limited TPH biodegradation by diminishing the viable concentration of microorganisms, altering the composition of the soil microbial communities, and/or creating inhibitory conditions in soil. Study's findings underscore the importance of soil characteristics and petroleum hydrocarbon properties and inform on potential limitations of combined H2O2 oxidation and biodegradation in weathered soils.


Asunto(s)
Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Hidrocarburos/metabolismo , Peróxido de Hidrógeno , Oxidantes , Peróxidos , Petróleo/metabolismo , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/metabolismo
11.
Chemosphere ; 298: 134238, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35276106

RESUMEN

When released in the environment, microplastics undergo surface weathering due to mechanical abrasion and ultraviolet exposure. In this study, the adsorption of two model contaminants, phenanthrene and methylene blue, by weathered high density polyethylene (HDPE) and polypropylene (PPE) was evaluated to understand how the microplastics' aging influences contaminant adsorption. Microplastics were aged through an accelerated weathering process using ultraviolet exposure with or without hydrogen peroxide. Adsorption isotherms were conducted for both contaminants on pristine and aged microplastics. The adsorption of organic contaminants was higher on aged microplastics than on pristine ones, with methylene blue having the highest affinity increase with aging at 4.7-fold and phenanthrene having a 1.9-fold increase compared to the pristine particles. To understand the mechanisms involved with higher adsorption of contaminants by aged microplastics, changes in the specific surface area and surface chemistry of aged microplastics were characterized by Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy, zeta potential, X-ray tomography, and Brunauer-Emmett-Teller krypton adsorption analyses. The results of this study show that oxidation of microplastics can enhance the adsorption of organic contaminants, which may increase their role as vectors of contaminants in the aquatic food chain.


Asunto(s)
Fenantrenos , Contaminantes Químicos del Agua , Adsorción , Azul de Metileno , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis
12.
Bioresour Technol ; 351: 127090, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35358670

RESUMEN

Nanobubbles have the potential to curtail the loss of oxygen during activated sludge aeration due to their extensive surface areas and lack of buoyance in solution. In this study, nanobubble aeration was explored as a novel approach to enhance aerobic activated sludge treatment and benchmarked against coarse bubble aeration at the lab scale. Nanobubble aerated activated sludge reactors achieved greater dissolved oxygen levels at faster rates. Higher soluble chemical oxygen demand removal by 10% was observed when compared to coarse bubble aeration with the same amount of air. The activated sludge produced compact sludge yielding easier waste sludge for subsequent sludge handling. The samples showed fewer filamentous bacteria with a lower relative abundance of floc forming Corynebacterium, Pseudomonas, and Zoogloea in the sludge. The microbiome of the nanobubble-treated activated sludge showed significant shifts in the abundance of community members at the genus level and significantly lower alpha and beta diversities.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Reactores Biológicos/microbiología , Consorcios Microbianos , Oxígeno/análisis , Aguas del Alcantarillado/microbiología
13.
J Colloid Interface Sci ; 607(Pt 1): 720-728, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34536932

RESUMEN

HYPOTHESIS: Carbon dioxide nanobubbles can increase effective gas-transfer to solution and enhance buffering capacity given the stable suspension in water of CO2 gas within nanobubbles and the existence of larger gas/water interface. EXPERIMENTS: The physico-chemical properties and responses of CO2 nanobubbles were recorded at different generation times (10, 30, 50, and 70 min) and benchmarked against traditional macrobubbles of CO2 for the same amount of delivered gas. Effective concentration of CO2 was evaluated by measuring the buffer capacity (ß). The size distribution of nanobubbles during the experiments was measured by Nanoparticle Track Analysis. FINDINGS: The mass transfer coefficient (KLa) showed a dramatically increase by 11-fold for the same volume of gas delivered when using nanobubbles. The ß values obtained for nanobubbles were 7 times higher than that of traditional bubbles which can lead to significant source of CO2 availability by using the nanobubble method. Nanobubbles, consequently, undergo mass loss at higher pH corresponding to mass transfer process due to concentration gradient at the surrounding nanobubbles. This is the first report of CO2 nanobubbles buffer capacity evaluation.


Asunto(s)
Nanopartículas , Agua , Dióxido de Carbono
14.
Sci Total Environ ; 793: 148473, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34328993

RESUMEN

The purpose of this study is to investigate adsorptive removal of carbamazepine from natural source waters by superfine pulverized powdered activated carbon. Superfine pulverization is becoming an increasingly attractive approach to decrease the diffusion path of a target adsorbate molecule and improve the overall the kinetics of activated carbon adsorption. Here we report the impact of pulverization on powdered activated carbon characteristics, and carbamazepine adsorption behavior in distilled and deionized water and natural organic matter solutions. The superfine pulverization decreased the particle size of activated carbon by 50 folds and the specific surface area by 24%. In addition, the micropore volume of the activated carbon decreased from 0.23 cm3/g to 0.14 cm3/g, while mesopore and macropore volumes increased from 0.15 cm3/g and 0.11 cm3/g to 0.18 cm3/g and 0.48 cm3/g, respectively. In terms of surface chemistry, the oxygen and iron contents of the activated carbon increased notably after pulverization. Despite the decrease in surface area and increase in surface polarity, the pulverization improved the adsorption kinetics especially for short contact times i.e., < 6-h. In general, the dissolved organic carbon concentration negatively influenced the kinetic advantage of superfine pulverized activated carbon. Isotherm results indicated that the parent adsorbent has a higher adsorption capacity than superfine activated carbon in distilled and deionized water and in natural waters. This was attributed to the losses in specific surface area and favorable sorption sites inside micropores. Our literature analysis indicated that unlike the small molecular weight hydrophilic organic compounds, the pseudo-equilibrium adsorption capacity could be increased or at least not deteriorated for hydrophobic molecules (Kow > 3). Therefore, superfine pulverization of PAC can serve as a promising approach to remove micropollutants from natural source waters with a kinetic advantage.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbamazepina , Carbón Orgánico , Cinética , Compuestos Orgánicos , Polvos
15.
Environ Sci Technol ; 55(9): 5608-5619, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33881842

RESUMEN

Extensive use of per- and polyfluoroalkyl substances (PFAS) has caused their ubiquitous presence in natural waters. One of the standard practices for PFAS removal from water is adsorption onto granular activated carbon (GAC); however, this approach generates a new waste stream, i.e., PFAS-laden GAC. Considering the recalcitrance of PFAS molecules in the environment, inadequate disposal (e.g., landfill or incineration) of PFAS-laden GAC may let PFAS back into the aquatic cycle. Therefore, developing approaches for PFAS-laden GAC management present unique opportunities to break its forever circulation within the aqueous environment. This comprehensive review evaluates the past two decades of research on conventional thermal regeneration of GAC and critically analyzes and summarizes the literature on regeneration of PFAS-laden GACs. Optimized thermal regeneration of PFAS-laden GACs may provide an opportunity to employ existing regeneration infrastructure to mineralize the adsorbed PFAS and recover the spent GAC. The specific objectives of this review are (i) to investigate the role of physicochemical properties of PFAS on thermal regeneration, (ii) to assess the changes in regeneration yield as well as GAC physical and chemical structure upon thermal regeneration, and (iii) to critically discuss regeneration parameters controlling the process. This literature review on the engineered regeneration process illustrates the significant promise of this approach that can break the endless environmental cycle of these forever chemicals, while preserving the desired physicochemical properties of the valuable GAC adsorbent.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis
16.
J Fish Dis ; 44(4): 359-370, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33559228

RESUMEN

Aquaculture is the fastest growing food-production sector and is vital to food security, habitat restoration and endangered species conservation. One of the continued challenges to the industry is our ability to manage aquatic disease agents that can rapidly decimate operations and are a constant threat to sustainability. Such threats also evolve as microbes acquire resistance and/or new pathogens emerge. The advent of nanotechnology has transformed our approach to fisheries disease management with advances in water disinfection, food conversion, fish health and management systems. In this review, several nano-enabled technology successes will be discussed as they relate to the challenges associated with disease management in the aquaculture sector, with a particular focus on fishes. Future perspectives on how nanotechnology can offer functional approaches for improving disinfection and innovating at the practical space of early warning systems will be discussed. Finally, the importance of "safety by design" approaches to the development of novel commercial nano-enabled products will be emphasized.


Asunto(s)
Acuicultura/métodos , Enfermedades de los Peces/prevención & control , Peces , Nanotecnología/métodos , Animales
17.
Sci Total Environ ; 736: 139690, 2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32504867

RESUMEN

Microplastic particles and fibers are increasingly being detected in our surface and ground waters as well as within a wide range of aquatic species. Their presence in the environment is largely due to in situ generation from physical and chemical weathering of larger plastics, and thus has left environmental community concerned in the post-banned era of microbead use in personal care products through the passage of Microbead-Free Waters Act in the United States. To improve understanding of secondary microplastic formation, accelerated weathering has been conducted on four materials (high-density polyethylene, high impact polystyrene, nylon 6, and polypropylene) under ultraviolet radiation (equivalent to 44 days in full sun) in simulated seawater. Physical and chemical characterization of the plastics were completed following ultraviolet exposure. This simulated weathering generated microfibers from high-density polyethylene and nylon 6, while high impact polystyrene and polypropylene did not physically degrade. The techniques used were applied to sediment samples containing plastic pellets collected from Cox Creek in Port Comfort, TX (near a large plastics manufacturer), which were purified for analysis and were found to contain microplastics composed of polypropylene and polyethylene. These findings can be used to determine degradation pathways and plastic source tracking, which can facilitate risk assessment and environmental management.

18.
Chemosphere ; 253: 126628, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32464771

RESUMEN

Superfine powdered activated carbon (S-PAC) is an adsorbent material with the promise of properties that allow for rapid adsorption of small molecule contaminants. To explore the potential for rapid adsorption among varying activated carbon types, seven commercially available activated carbons were obtained and pulverized to produce S-PAC particles less than 1 µm in diameter. The carbons were chosen to include several types of common carbons produced from coal precursors as well as a wood-based carbon and a coconut shell-based carbon. In this study, the S-PACs and their parent PACs were tested for the adsorption of three aromatic compounds-2-phenylphenol, biphenyl, and phenanthrene-with and without the presence of natural organic matter (NOM). Adsorption rates were increased for adsorption onto S-PAC as compared to PAC in all trials without NOM and in most trials with NOM. Faster adsorption onto S-PAC was found to be a result of a smaller particle size, lower surface oxygen content, larger pore diameters, and neutral pHPZC. Adsorption of a planar compound, phenanthrene, increased the most between PAC and S-PAC, while adsorption of 2-phenylphenol, a nonplanar compound, was impacted the least. Phenanthrene additionally was minimally impacted by the presence of NOM while 2-phenylphenol adsorption declined severely in the presence of NOM.


Asunto(s)
Adsorción , Carbón Orgánico/química , Compuestos Orgánicos/química , Hidrocarburos Aromáticos/química , Concentración de Iones de Hidrógeno , Cinética , Conformación Molecular , Tamaño de la Partícula
19.
Environ Int ; 137: 105586, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32086082

RESUMEN

Cannabinoids are incipient contaminants with limited literature in the context of water treatment. With increasing positive public opinion toward legalization and their increasing use as a pharmaceutical, cannabinoids are expected to become a critical class of pollutant that requires attention in the water treatment industry. The destructive removal of cannabinoids via chlorination and other oxidation processes used in drinking water and wastewater treatment requires careful investigation, because the oxidation and disinfection byproducts (DBPs) may pose significant risks for public health and the environment. Understanding transformation of cannabinoids is the first step toward the development of management strategies for this emerging class of contaminant in natural and engineered aquatic systems. This perspective reviews the current understanding of cannabinoid occurrence in water and its potential transformation pathways during the passage through drinking water and wastewater treatment systems with chlorination process. The article also aims to identify research gaps on this topic, which demand attention from the environmental science and engineering community.


Asunto(s)
Cannabinoides , Contaminantes Químicos del Agua , Purificación del Agua , Cannabinoides/química , Desinfección , Halogenación , Aguas Residuales
20.
RSC Adv ; 10(65): 39931-39942, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-35515381

RESUMEN

Alloys or smelted metal mixtures have served as cornerstones of human civilization. The advent of smelted copper and tin, i.e., bronze, in the 4th millennium B.C. in Mesopotamia has pioneered the preparation of other metal composites, such as brass (i.e., mixture of copper and zinc), since the bronze age. The contemporary use of these alloys has expanded beyond using their physical strength. The catalytic chemistry of micron-scale brass or copper-zinc alloy can be utilized to effectively degrade emerging contaminants (ECs) in water, which are presenting significant risks to human health and wildlife. Here, we examine the photocatalytic activity of a commercially available micro-copper-zinc alloy (KDF® 55, MicroCuZn), made with earth abundant metals, for oxidative removal of two ECs. The micron-scale brass is independently characterized for its morphology, which confirms that it has the ß-brass phase and that its plasmonic response is around 475 nm. Estriol (E3), a well-known EC, is removed from water with ultraviolet (UV) radiation catalyzed by MicroCuZn and H2O2-MicroCuZn combinations. The synergy between H2O2, UV, and MicroCuZn enhances hydroxyl radical (˙OH) generation and exhibit a strong pseudo-first-order kinetic degradation of E3 with a decay constant of 1.853 × 10-3 min-1 (r 2 = 0.999). Generation of ˙OH is monitored with N,N-dimethyl-4-nitrosoaniline (pNDA) and terephthalic acid (TA), which are effective ˙OH scavengers. X-ray photoelectron spectroscopy analysis has confirmed ZnO/CuO-Cu2O film formation after UV irradiation. The second EC studied here is Δ9-tetrahydrocannabinol or THC, a psychotropic compound commonly consumed through recreational or medicinal use of marijuana. The exceptionally high solids-water partitioning propensity of THC makes adsorption the dominant removal mechanism, with photocatalysis potentially supporting the removal efficacy of this compound. These results indicate that MicroCuZn can be a promising oxidative catalyst especially for degradation of ECs, with possible reusability of this historically significant material with environmentally-friendly attributes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...