Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36986443

RESUMEN

Kaurenoic acid (KA) is a diterpene extracted from Sphagneticola trilobata (L.) Pruski. KA presents analgesic properties. However, the analgesic activity and mechanisms of action of KA in neuropathic pain have not been investigated so far; thus, we addressed these points in the present study. A mouse model of neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve. Acute (at the 7th-day post-CCI surgery) and prolonged (from 7-14th days post-CCI surgery) KA post-treatment inhibited CCI-induced mechanical hyperalgesia at all evaluated time points, as per the electronic version of von Frey filaments. The underlying mechanism of KA was dependent on activating the NO/cGMP/PKG/ATP-sensitive potassium channel signaling pathway since L-NAME, ODQ, KT5823, and glibenclamide abolished KA analgesia. KA reduced the activation of primary afferent sensory neurons, as observed by a reduction in CCI-triggered colocalization of pNF-κB and NeuN in DRG neurons. KA treatment also increased the expression of neuronal nitric oxide synthase (nNOS) at the protein level as well as the intracellular levels of NO in DRG neurons. Therefore, our results provide evidence that KA inhibits CCI neuropathic pain by activating a neuronal analgesic mechanism that depends on nNOS production of NO to silence the nociceptive signaling that generates analgesia.

2.
Pain ; 161(4): 773-786, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31790010

RESUMEN

The ability to sense visceral pain during appendicitis is diminished with age leading to delay in seeking health care and poorer clinical outcomes. To understand the mechanistic basis of this phenomenon, we examined visceral nociception in aged mouse and human tissue. Inflamed and noninflamed appendixes were collected from consenting patients undergoing surgery for the treatment of appendicitis or bowel cancer. Supernatants were generated by incubating samples in buffer and used to stimulate multiunit activity in intestinal preparations, or single-unit activity from teased fibres in colonic preparations, of young and old mice. Changes in afferent innervation with age were determined by measuring the density of calcitonin gene-related peptide-positive afferent fibres and by counting dorsal root ganglia back-labelled by injection of tracer dye into the wall of the colon. Finally, the effect of age on nociceptor function was studied in mouse and human colon. Afferent responses to appendicitis supernatants were greatly impaired in old mice. Further investigation revealed this was due to a marked reduction in the afferent innervation of the bowel and a substantial impairment in the ability of the remaining afferent fibres to transduce noxious stimuli. Translational studies in human tissue demonstrated a significant reduction in the multiunit but not the single-unit colonic mesenteric nerve response to capsaicin with age, indicative of a loss of nociceptor innervation. Our data demonstrate that anatomical and functional deficits in nociception occur with age, underpinning the atypical or silent presentation of appendicitis in the elderly.


Asunto(s)
Apendicitis , Anciano , Animales , Apendicitis/complicaciones , Colon , Ganglios Espinales , Humanos , Ratones , Neuronas Aferentes , Nocicepción , Nociceptores , Dolor Visceral
3.
An Acad Bras Cienc ; 91(2): e20180389, 2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31141012

RESUMEN

We investigated the effects of acetylsalicylic acid (ASA) on the total myenteric neuronal population in the descending colon in Trypanosoma cruzi-infected mice. Thirty-five male Swiss mice, 60 days old, were divided into a control group (C group), control group treated with ASA (CA group), infected group (I group), and infected group treated with ASA (IA group). A total of 1300 trypomastigotes of the Y strain of T. cruzi were intraperitoneally inoculated in the IA and I groups. The CA and IA groups were treated with ASA intraperitoneally. At 75 days post-infection (dpi), all of the animals were sacrificed. Neurons in the colon were stained with Giemsa, quantified, and measured. No difference in the course of infection was observed between the IA and I groups, reflected by the parasitemia curve. Acetylsalicylic acid treatment in the CA and IA groups did not alter the total number of myenteric neurons compared with the C and I groups. The CA and IA groups exhibited an increase in the nuclear area, cytoplasmic area, and neuronal body area compared with the C and I groups. Future studies should elucidate the mechanism of action of ASA against Chagas' disease in the chronic phase.


Asunto(s)
Aspirina/farmacología , Enfermedad de Chagas/patología , Plexo Mientérico/efectos de los fármacos , Neuronas/efectos de los fármacos , Parasitemia , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Masculino , Ratones , Plexo Mientérico/citología , Neuronas/citología
4.
J Physiol ; 597(6): 1503-1515, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30605228

RESUMEN

KEY POINTS: Tenascin X (TNX) functions in the extracellular matrix of skin and joints where it maintains correct intercellular connections and tissue architecture TNX is associated exclusively with vagal-afferent endings and some myenteric neurones in mouse and human stomach, respectively. TNX-deficient mice have accelerated gastric emptying and hypersensitivity of gastric vagal mechanoreceptors that can be normalized by an inhibitor of vagal-afferent sensitivity. Cultured nodose ganglion neurones showed no changes in response to capsaicin, cholecystokinin and potassium chloride in TNX-deficient mice. TNX-deficient patients have upper gastric dysfunction consistent with those in a mouse model. Our translational studies suggest that abnormal gastric sensory function may explain the upper gut symptoms present in TNX deficient patients, thus making it important to study gastric physiology. TNX deficiency should be evaluated routinely in patients with connective tissue abnormalities, which will enable a better understanding of its role and allow targeted treatment. For example, inhibitors of vagal afferents-baclofen could be beneficial in patients. These hypotheses need confirmation via targeted clinical trials. ABSTRACT: Tenascin-X (TNX) is a glycoprotein that regulates tissue structure via anti-adhesive interactions with collagen in the extracellular matrix. TNX deficiency causes a phenotype similar to hypermobility Ehlers-Danlos syndrome involving joint hypermobility, skin hyperelasticity, pain and gastrointestinal dysfunction. Previously, we have shown that TNX is required for neural control of the bowel by a specific subtype of mainly cholinergic enteric neurones and regulates sprouting and sensitivity of nociceptive sensory endings in mouse colon. These findings correlate with symptoms shown by TNX-deficient patients and mice. We aimed to identify whether TNX is similarly present in neural structures found in mouse and human gastric tissue. We then determined whether TNX has a functional role, specifically in gastric motor and sensory function and nodose ganglia neurones. We report that TNX was present in calretinin-immunoreactive extrinsic nerve endings in mouse and human stomach. TNX deficient mice had accelerated gastric emptying and markedly increased vagal afferent responses to gastric distension that could be rescued with GABAB receptor agonist. There were no changes in nodose ganglia excitability in TNX deficient mice, suggesting that vagal afferent responses are probably the result of altered peripheral mechanosensitivity. In TNXB-deficient patients, significantly greater symptoms of reflux, indigestion and abdominal pain were reported. In the present study, we report the first role for TNX in gastric function. Further studies are required in TNX deficient patients to determine whether symptoms can be relieved using GABAB agonists.


Asunto(s)
Síndrome de Ehlers-Danlos/genética , Vaciamiento Gástrico , Estómago/fisiología , Tenascina/genética , Animales , Células Cultivadas , Síndrome de Ehlers-Danlos/fisiopatología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Neuronas Aferentes/metabolismo , Neuronas Aferentes/fisiología , Ganglio Nudoso/citología , Ganglio Nudoso/metabolismo , Ganglio Nudoso/fisiología , Estómago/fisiopatología , Tenascina/metabolismo , Nervio Vago/metabolismo , Nervio Vago/fisiología
5.
J Physiol ; 596(17): 4237-4251, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29917237

RESUMEN

KEY POINTS: Tenascin-X (TNX) is an extracellular matrix glycoprotein with anti-adhesive properties in skin and joints. Here we report the novel finding that TNX is expressed in human and mouse gut tissue where it is exclusive to specific subpopulations of neurones. Our studies with TNX-deficient mice show impaired defecation and neural control of distal colonic motility that can be rescued with a 5-HT4 receptor agonist. However, colonic secretion is unchanged. They are also susceptible to internal rectal intussusception. Colonic afferent sensitivity is increased in TNX-deficient mice. Correspondingly, there is increased density of and sensitivity of putative nociceptive fibres in TNX-deficient mucosa. A group of TNX-deficient patients report symptoms highly consistent with those in the mouse model. These findings suggest TNX plays entirely different roles in gut to non-visceral tissues - firstly a role in enteric motor neurones and secondly a role influencing nociceptive sensory neurones Studying further the mechanisms by which TNX influences neuronal function will lead to new targets for future treatment. ABSTRACT: The extracellular matrix (ECM) is not only an integral structural molecule, but is also critical for a wide range of cellular functions. The glycoprotein tenascin-X (TNX) predominates in the ECM of tissues like skin and regulates tissue structure through anti-adhesive interactions with collagen. Monogenic TNX deficiency causes painful joint hypermobility and skin hyperelasticity, symptoms characteristic of hypermobility Ehlers Danlos syndrome (hEDS). hEDS patients also report consistently increased visceral pain and gastrointestinal (GI) dysfunction. We investigated whether there is a direct link between TNX deficiency and GI pain or motor dysfunction. We set out first to learn where TNX is expressed in human and mouse, then determine how GI function, specifically in the colon, is disordered in TNX-deficient mice and humans of either sex. In human and mouse tissue, TNX was predominantly associated with cholinergic colonic enteric neurones, which are involved in motor control. TNX was absent from extrinsic nociceptive peptidergic neurones. TNX-deficient mice had internal rectal prolapse and a loss of distal colonic contractility which could be rescued by prokinetic drug treatment. TNX-deficient patients reported increased sensory and motor GI symptoms including abdominal pain and constipation compared to controls. Despite absence of TNX from nociceptive colonic neurones, neuronal sprouting and hyper-responsiveness to colonic distension was observed in the TNX-deficient mice. We conclude that ECM molecules are not merely support structures but an integral part of the microenvironment particularly for specific populations of colonic motor neurones where TNX exerts functional influences.


Asunto(s)
Colon/patología , Matriz Extracelular/metabolismo , Enfermedades Gastrointestinales/patología , Neuronas Motoras/patología , Células Receptoras Sensoriales/patología , Tenascina/metabolismo , Animales , Movimiento Celular , Colon/metabolismo , Femenino , Enfermedades Gastrointestinales/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Células Receptoras Sensoriales/metabolismo , Tenascina/genética
6.
J Photochem Photobiol B ; 162: 367-373, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27424097

RESUMEN

Inflammatory bowel disease (IBD) presents intense inflammatory infiltrate, crypt abscesses, ulceration and even loss of function. Despite the clinical relevance of IBD, its current therapy remains poorly effective. Infrared wavelength phototherapy shows therapeutic potential on inflammation. Our goal was to evaluate whether light-emitting diodes (LED) at 940nm are capable of mitigating the colitis-induced inflammatory process in mice. Forty male Swiss mice were assigned into five groups: control; control treated with LED therapy; colitis without treatment; colitis treated with LED therapy; colitis treated with Prednisolone. Experimental colitis was induced by acetic acid 7.5% (pH2.5) rectal administration. LED therapy was performed with light characterized by wavelength of 940nm, 45nm bandwidth, intensity of 4.05J/cm(2), total power of 270mW and total dose of 64.8J for 4min in a single application. Colitis-induced intestinal transit delay was inhibited by LED therapy. Colitis caused an increase of colon dimensions (length, diameter, total area) and colon weight (edema), which were inhibited by LED therapy. LED therapy also decreased colitis-induced tissue gross lesion, myeloperoxidase activity, microscopic tissue damage score and the presence of inflammatory infiltrate in all intestinal layers. Furthermore, LED therapy inhibited colitis-induced IL-1ß, TNF-α, and IL-6 production. We conclude LED therapy at 940nm inhibited experimental colitis-induced colon inflammation in mice, therefore, rendering it a promising therapeutic approach that deserves further investigation.


Asunto(s)
Colitis/terapia , Equipos y Suministros Eléctricos , Fototerapia , Animales , Colitis/complicaciones , Colitis/metabolismo , Colitis/fisiopatología , Colon/metabolismo , Colon/efectos de la radiación , Edema/complicaciones , Tránsito Gastrointestinal/efectos de la radiación , Interleucina-1beta/biosíntesis , Interleucina-6/biosíntesis , Masculino , Ratones , Peroxidasa/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis
7.
Parasitol Res ; 115(4): 1557-66, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26711452

RESUMEN

Experimental models of mouse paw infection with L. amazonensis show an induction of a strong inflammatory response in the skin, and parasitic migration may occur to secondary organs with consequent tissue injury. There are few studies focusing on the resolution of damage in secondary organs caused by Leishmania species-related cutaneous leishmaniasis. We investigated the propolis treatment effect on liver inflammation induced by Leishmania amazonensis infection in the mouse paw. BALB/c mice were infected in the hind paw with L. amazonensis (10(7)) promastigote forms. After 15 days, animals were treated daily with propolis (5 mg/kg), Glucantime (10 mg/kg), or with propolis plus Glucantime combined. After 60 days, mice were euthanized and livers were collected for inflammatory process analysis. Liver microscopic analysis showed that propolis reduced the inflammatory process compared to untreated infected control. There was a decrease of liver myeloperoxidase and N-acetyl-ß-glucosaminidase activity levels, collagen fiber deposition, pro-inflammatory cytokine production, and plasma aspartate transaminase and alanine transaminase levels. Furthermore, propolis treatment enhanced anti-inflammatory cytokine levels and reversed hepatosplenomegaly. Our data demonstrated that daily low doses of Brazilian propolis reduced the secondary chronic inflammatory process in the liver caused by L. amazonensis subcutaneous infection in a susceptible mice strain.


Asunto(s)
Inflamación/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Própolis/uso terapéutico , Animales , Citocinas/biosíntesis , Inflamación/parasitología , Leishmania mexicana/efectos de los fármacos , Leishmaniasis Cutánea/complicaciones , Hígado/efectos de los fármacos , Hígado/parasitología , Masculino , Meglumina , Antimoniato de Meglumina , Ratones , Ratones Endogámicos BALB C , Compuestos Organometálicos
8.
An Acad Bras Cienc ; 86(3): 1303-14, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25140504

RESUMEN

This study sought to morphometrically analyze the jejunal wall of protein-malnourished rats administered a probiotic supplement. The sample consisted of recently weaned Wistar rats (Rattus norvegicus) distributed among four groups: animals given a commercial diet (G1, n = 4); animals given the same ration as G1 plus a probiotic supplement (G2, n = 4); animals given a 4% protein diet (G3, n = 4); and animals given the same ration as G3 plus a probiotic supplement (G4, n = 4). After 12 weeks, part of the jejunum was harvested and subjected to routine histological processing. Transverse sections with a thickness of 3 µm were stained with HE, and histochemical techniques were used to assay for glycoconjugates, including staining with periodic acid-Schiff (PAS) + diastase, Alcian Blue (AB) solution at pH 2.5, and Alcian Blue solution at pH 1.0. Morphometric analysis of the bowel wall showed that the probiotic culture used in this study induced hypertrophy of several layers of the jejunal wall in well-nourished animals and reduced the bowel wall atrophy usually observed in protein-malnourished animals. Neither malnutrition nor the use of probiotics altered the relationship between the number of goblet cells and the number of enterocytes.


Asunto(s)
Mucosa Intestinal/patología , Probióticos/administración & dosificación , Desnutrición Proteico-Calórica/patología , Alimentación Animal , Animales , Modelos Animales de Enfermedad , Histocitoquímica , Masculino , Ratas Wistar , Destete
9.
An Acad Bras Cienc ; 86(4): 1833-48, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25590720

RESUMEN

The effects of food restriction (FR) on the morphoquantitative aspects of the wall and myenteric neurons of the proximal colon in adult rats were analysed. FR was imposed by duplication of the experimental brood size in relation to the control brood during lactation. The FR group received a 50% reduction of food from weaning until 90 days of age. Samples of the colon underwent histological processing to morphometrically analyze the crypts, muscularis mucosae, tunica mucosa, and muscularis externa. We determined the number of goblet cells and serotoninergic enteroendocrine cells, and morphoquantitatively studied the myenteric neuronal population. FR caused hypertrophy in the tunica mucosa, increase in crypt depth and in the muscular layer of the mucosa, a decrease in the thickness of the tunica muscularis and in the number of goblet cells and an increase in serotoninergic cells. A higher neuronal density in the ganglia and a reduction of the cell profile area were observed in the FR group. FR imposed since lactation led to hypertrophy of the tunica mucosa, a reduction of neutral mucin production, atrophy of the tunica muscularis, and an increase in the survival neuronal in adult rats, attributable to an increase in the number of serotoninergic enteroendocrine cells in mucosa.


Asunto(s)
Restricción Calórica/efectos adversos , Colon/patología , Mucosa Intestinal/patología , Plexo Mientérico/patología , Animales , Animales Recién Nacidos , Colon/inervación , Femenino , Lactancia , Embarazo , Ratas Wistar
10.
Int J Exp Pathol ; 93(4): 279-86, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22804764

RESUMEN

Toxoplasma gondii (T. gondii) crosses the intestinal barrier in oral infections and can lead to changes in different cell types, including the neurons located there. In the gastrointestinal system, the autonomous nervous system component that regulate blood flow and mucous secretion is the submucosal plexus. The aim of this study was to examine the effects of T. gondii infection on intraepithelial lymphocytes (IELs), goblet cells and submucosal neurons that are immunoreactive to vasoactive intestinal peptide (VIP-IR) of rat jejunum. Twenty male rats distributed as a control group (CG) and an infected group (IG), which received a suspension with 500 parasite oocysts (strain ME-49, genotype II) orally, were assessed. Routine histological sections were used to quantify IELs and to detect mucins secreted by goblet cells. Whole mounts including the submucosal layer were examined using immunofluorescence to detect the VIP neurotransmitter. Quantitative alterations in IELs were not observed. However, the reduction (P < 0.05) in the number of goblet cells that produce neutral mucins (PAS+) and sulphomucins (AB pH 1.0) and the maintenance of sialomucin-secreting cells (AB pH 2.5) resulting in a more fluid mucous were observed. Concerning the VIP-IR submucosal neurons, an increase in fluorescence on IG animals was observed. There was a reduction (P < 0.05) in the number of VIP-IR submucosal neurons and atrophy of their cell bodies in IG rats. Infection with T. gondii caused alterations in the chemical composition of the intestinal mucous and reduction in the neuron number and atrophy of the remaining neurons in this cell subpopulation.


Asunto(s)
Células Caliciformes/patología , Yeyuno/patología , Yeyuno/parasitología , Linfocitos/patología , Neuronas/metabolismo , Neuronas/patología , Toxoplasmosis/patología , Péptido Intestinal Vasoactivo/metabolismo , Animales , Atrofia , Recuento de Células , Modelos Animales de Enfermedad , Células Caliciformes/metabolismo , Yeyuno/metabolismo , Linfocitos/metabolismo , Masculino , Mucinas/metabolismo , Ratas , Ratas Wistar , Plexo Submucoso/metabolismo , Plexo Submucoso/patología , Toxoplasma/aislamiento & purificación , Toxoplasmosis/metabolismo
11.
An Acad Bras Cienc ; 84(3): 727-36, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22801377

RESUMEN

The objective of this study was to analyze morphometrically the colon wall strata of malnourished rats supplemented with probiotics. Sixteen recently weaned Wistar rats (Rattus norvegicus) were distributed into four groups: animals that received commercial chow (G1, n = 4); animals that received the same feed as G1 and were supplemented with probiotics (G2, n = 4); animals that received chow with 4% of proteins (G3, n = 4); animals that received the same feed as G3 and were supplemented with probiotics (G4, n = 4). After 12 weeks, the proximal colon was collected and submitted to histological processing. Three-µm cuts were stained with H.E., Periodic Acid Schifff (P.A.S.) + diasthasis solution and Alcian Blue (A.B.) pH 2.5 and pH 1.0. The morphometric analysis of the intestinal wall showed that the supplementation with ABT-4 probiotic culture prevents the growth deficit of colon wall strata that normally occurs in malnourished rats right after lactation. Besides, no alteration was observed in the proportion of the number of globet cells in relation to the number of enterocytes in malnourished rats, regardless of the supplementation with probiotics.


Asunto(s)
Alimentación Animal , Colon/crecimiento & desarrollo , Desnutrición/dietoterapia , Probióticos/administración & dosificación , Animales , Masculino , Desnutrición/patología , Ratas , Ratas Wistar , Destete
12.
An Acad Bras Cienc ; 84(3): 799-806, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22832543

RESUMEN

The effects of severe protein malnutrition (4%) on myenteric neurons of Wistar rat duodenum, in relation to a standard 22%-protein diet for rodents, were assessed in this study. Segments of the duodenum from 10 rats from each nutritional group were submitted to the elaboration of whole mounts - 5 stained with Giemsa to determine the total population of myenteric neurons and the others stained by a histochemical method to detect nervous cells through the NADPH-diaphorase enzyme activity for studying the subpopulation of nitrergic neurons. The area of 100 neurons per animal, totalizing 2,000 neurons, were randomly measured by using the Image Pro-Plus(®)software. Malnourished rats presented 34.38% lower body weight and 10.60% duodenum length reduction when compared to the control group. Quantitative analysis demonstrated no significant differences between control and malnourished group by using Giemsa; however, as the organ reduction was not followed by an increase inversely proportional to the density of neurons, the condition imposed suggests the loss of neurons from the total population. Nevertheless, through NADPH-d histochemistry, there was a neuronal density increase for the malnourished group. There was no significant difference between the groups for both techniques with respect to the morphometric analysis of the body cell.


Asunto(s)
Duodeno/inervación , Duodeno/patología , Plexo Mientérico/patología , Neuronas/patología , Desnutrición Proteico-Calórica/patología , Animales , Dieta con Restricción de Proteínas , Histocitoquímica , Masculino , Ratas , Ratas Wistar
13.
An Acad Bras Cienc ; 84(3): 737-46, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22832545

RESUMEN

The effects of acute and chronic infection caused by Toxoplasma gondii on duodenal myenteric neurons were analyzed. Eighteen rats were assigned into four groups: Acute Control Group (ACG, n=4); Acute Experimental Group (AEG, n=4); Chronic Control Group (CCG, n=5); and Chronic Experimental Group (CEG, n=5). Rats from the AEG and CEG were inoculated orally with 105 genotype III (BTU-II strain) tachyzoites of T. gondii isolated from a dog with neurological signs. Acute groups were killed after 24 hours after the inoculation and the chronic groups after 30 days. Whole-mount from the duodenum were stained with Giemsa. The population density of myenteric neurons, as well the body cell, nuclear and cytoplasmic area were analyzed. Both acute and chronic toxoplasmic infection did not provoke neuronal loss. On the other hand, plastic alterations were observed: decreasing of the nuclear and cytoplasmic area during the acute phase and neuronal hypertrophy during the chronic phase.


Asunto(s)
Duodeno/inervación , Plexo Mientérico/patología , Plasticidad Neuronal , Neuronas/patología , Toxoplasma/genética , Toxoplasmosis Animal/patología , Animales , Modelos Animales de Enfermedad , Perros , Duodeno/parasitología , Genotipo , Masculino , Plexo Mientérico/parasitología , Neuronas/parasitología , Ratas , Ratas Wistar , Toxoplasma/aislamiento & purificación
14.
An Acad Bras Cienc ; 83(2): 545-55, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21670878

RESUMEN

Define an experimental model by evaluating quantitative and morphometric changes in myenteric neurons of the colon of mice infected with Trypanosoma cruzi. Twenty-eight Swiss male mice were distributed into groups: control (CG, n=9) and inoculated with 100 (IG(100), n=9) and 1000 (IG(1000), n=10) blood trypomastigotes, Y strain-T. cruzi II. Parasitemia was evaluated from 3-25 days post inoculation (dpi) with parasites peak of 7.7 × 10(6) and 8.4 × 10(6) trypomastigotes/mL at 8(th) dpi (p>0.05) in IG(100) and IG(1000), respectively. Chronic phase of the infection was obtained with two doses of 100mg/Kg/weight and one dose of 250mg/Kg/weight of Benznidazole on 11, 16 and 18 dpi. Three animals from each group were euthanized at 18, 30 and 75 dpi. The colon was stained with Giemsa. The quantitative and morphometric analysis of neurons revealed that the infection caused a decrease of neuronal density on 30(th) dpi (p<0.05) and 75 dpi (p<0.05) in IG(100) and IG(1000). Infection caused death and neuronal hypertrophy in the 75(th) dpi in IG(100) and IG(1000) (p<0.05, p<0.01). The changes observed in myenteric neurons were directly related to the inoculate and the time of infection.


Asunto(s)
Enfermedad de Chagas/patología , Colon/inervación , Plexo Mientérico/parasitología , Neuronas/parasitología , Trypanosoma cruzi , Animales , Enfermedad Crónica , Colon/patología , Modelos Animales de Enfermedad , Masculino , Ratones , Plexo Mientérico/patología , Neuronas/patología , Parasitemia , Factores de Tiempo
15.
An. acad. bras. ciênc ; 83(2): 545-555, June 2011. ilus, tab
Artículo en Inglés | LILACS | ID: lil-589914

RESUMEN

Define an experimental model by evaluating quantitative and morphometric changes in myenteric neurons of the colon of mice infected with Trypanosoma cruzi. Twenty-eight Swiss male mice were distributed into groups: control (CG, n=9) and inoculated with 100 (IG100, n=9) and 1000 (IG1000, n=10) blood trypomastigotes, Y strain-T. cruzi II. Parasitemia was evaluated from 3-25 days post inoculation (dpi) with parasites peak of 7.7 × 10(6) and 8.4 × 10(6) trypomastigotes/mL at 8th dpi (p>0.05) in IG100 and IG1000, respectively. Chronic phase of the infection was obtained with two doses of 100mg/Kg/weight and one dose of 250mg/Kg/weight of Benznidazole on 11, 16 and 18 dpi. Three animals from each group were euthanized at 18, 30 and 75 dpi. The colon was stained with Giemsa. The quantitative and morphometric analysis of neurons revealed that the infection caused a decrease of neuronal density on 30th dpi (p<0.05) and 75 dpi (p<0.05) in IG100 and IG1000. Infection caused death and neuronal hypertrophy in the 75th dpi in IG100 and IG1000 (p<0.05, p<0.01). The changes observed in myenteric neurons were directly related to the inoculate and the time of infection.


Definir um modelo experimental de avaliação de alterações quantitativas e morfométricas nos neurônios mientéricos do cólon de camundongos infectados pelo Trypanosoma cruzi. Vinte e oito camundongos Swiss machos foram distribuídos nos grupos: controle (GC, n=9) e infectados com 100 (IG100, n=9) e 1000 (IG1000, n=10) tripomastigotas sanguíneos, cepa Y-T. cruzi II. A parasitemia foi avaliada 3-25 dias pós inoculação (dpi), com pico de parasitos de 7,7 × 10(6) e 8,4 × 10(6) tripomastigotas/mL no 8º dpi (p>0,05) em IG100 e IG1000, respectivamente. A fase crônica da infecção foi obtida com duas doses de 100mg/Kg/weight e uma dose de 250mg/Kg/ weight do benznidazol, em 11, 16 e 18 dpi. Três animais de cada grupo foram sacrificados aos 18, 30 e 75 dpi. O cólon foi corado com Giemsa. A análise quantitativa e morfométrica de neurônios revelou que a infecção causou uma diminuição da densidade neuronal no 30º dpi (p<0,05) e 75 dpi (p<0,05) em IG100 e IG1000. A infecção causou morte e hipertrofia neuronal no 75º dpi em IG100 e IG1000 (p<0,05, p<0,01). As alterações observadas nos neurônios mientéricos foram diretamente relacionadas ao inóculo e tempo de infecção.


Asunto(s)
Animales , Masculino , Ratones , Enfermedad de Chagas/patología , Colon/inervación , Plexo Mientérico/parasitología , Neuronas/parasitología , Trypanosoma cruzi , Enfermedad Crónica , Colon/patología , Modelos Animales de Enfermedad , Plexo Mientérico/patología , Neuronas/patología , Parasitemia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...