Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 12789, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550421

RESUMEN

Nitroaromatic compounds (NACs) are key contaminants of anthropogenic origin and pose a severe threat to human and animal lives. Although the catalytic activities of Re nanostructures (NSs) are significantly higher than those of other heterogeneous catalysts containing NSs, few studies have been reported on the application of Re-based nanocatalysts for NAC hydrogenation. Accordingly, herein, catalytic reductions of nitrobenzene (NB), 4-nitrophenol (4-NP), 2-nitroaniline (2-NA), 4-nitroaniline (4-NA), and 2,4,6-trinitrophenol (2,4,6-TNP) over new Re-based heterogeneous catalysts were proposed. The catalytic materials were designed to enable effective syntheses and stabilisation of particularly small Re structures over them. Accordingly, catalytic hydrogenations of NACs under mild conditions were significantly enhanced by Re sub-nanostructures (Re-sub-NSs). The highest pseudo-first-order rate constants for NB, 4-NP, 2-NA, 4-NA, and 2,4,6-TNP reductions over the catalyst acquired by stabilising Re using bis(3-aminopropyl)amine (BAPA), which led to Re-sub-NSs with Re concentrations of 16.7 wt%, were 0.210, 0.130, 0.100, 0.180, and 0.090 min-1, respectively.

2.
Nat Commun ; 11(1): 2120, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358536

RESUMEN

The human genome is extensively folded into 3-dimensional organization. However, the detailed 3D chromatin folding structures have not been fully visualized due to the lack of robust and ultra-resolution imaging capability. Here, we report the development of an electron microscopy method that combines serial block-face scanning electron microscopy with in situ hybridization (3D-EMISH) to visualize 3D chromatin folding at targeted genomic regions with ultra-resolution (5 × 5 × 30 nm in xyz dimensions) that is superior to the current super-resolution by fluorescence light microscopy. We apply 3D-EMISH to human lymphoblastoid cells at a 1.7 Mb segment of the genome and visualize a large number of distinctive 3D chromatin folding structures in ultra-resolution. We further quantitatively characterize the reconstituted chromatin folding structures by identifying sub-domains, and uncover a high level heterogeneity of chromatin folding ultrastructures in individual nuclei, suggestive of extensive dynamic fluidity in 3D chromatin states.


Asunto(s)
Cromatina/metabolismo , Cromatina/ultraestructura , Algoritmos , Línea Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , ADN/ultraestructura , Humanos , Hibridación in Situ , Microscopía Confocal , Microscopía Electrónica , Microscopía Electrónica de Rastreo
3.
Nanoscale ; 11(12): 5355-5364, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30848274

RESUMEN

Hollow multimetallic PtNiSn nanoparticles (NPs) were formed from solid Ni-core/Pt-frame NPs by the galvanic replacement reaction (GRR) of Ni by Sn. The GRR was performed by adding SnCl4·5H2O dissolved in ethylene glycol into the PtNi3 NPs containing suspension. The reaction yielded nanoframes with a hollow interior, having Pt-rich edges covered with a thin, incomplete Sn layer. They were investigated using transmission electron microscopy (TEM), energy dispersion X-ray spectroscopy (EDS) and X-ray diffraction (XRD). EDS analysis showed that the GRR rate could be modified by changing the solvent and the concentration of tin ions. Indeed, compared to water, ethylene glycol was found to facilitate the reduction of tin chloride and to affect nickel dissolution. TEM analysis revealed that the galvanic replacement of nickel and tin involves two different mechanisms. The first one consists of nickel oxidation followed by reduction of tin ions. In the second mechanism, oxidation of nickel and reduction of tin ions occur simultaneously.

4.
Small ; 13(47)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29116668

RESUMEN

At the core of luminescence color and lifetime tuning of rare earth doped upconverting nanoparticles (UCNPs), is the understanding of the impact of the particle architecture for commonly used sensitizer (S) and activator (A) ions. In this respect, a series of core@shell NaYF4 UCNPs doped with Yb3+ and Ho3+ ions are presented here, where the same dopant concentrations are distributed in different particle architectures following the scheme: YbHo core and YbHo@…, …@YbHo, Yb@Ho, Ho@Yb, YbHo@Yb, and Yb@YbHo core-shell NPs. As revealed by quantitative steady-state and time-resolved luminescence studies, the relative spatial distribution of the A and S ions in the UCNPs and their protection from surface quenching has a critical impact on their luminescence characteristics. Although the increased amount of Yb3+ ions boosts UCNP performance by amplifying the absorption, the Yb3+ ions can also efficiently dissipate the energy stored in the material through energy migration to the surface, thereby reducing the overall energy transfer efficiency to the activator ions. The results provide yet another proof that UC phosphor chemistry combined with materials engineering through intentional core@shell structures may help to fine-tune the luminescence features of UCNPs for their specific future applications in biosensing, bioimaging, photovoltaics, and display technologies.

5.
Nanoscale ; 9(24): 8288-8297, 2017 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-28585957

RESUMEN

The current frontier in nanomaterials engineering is to intentionally design and fabricate heterogeneous nanoparticles with desirable morphology and composition, and to integrate multiple functionalities through highly controlled epitaxial growth. Here we show that heterogeneous doping of Nd3+ ions following a core-shell design already allows three optical functions, namely efficient (η > 72%) light-to-heat conversion, bright NIR emission, and sensitive (SR > 0.1% K-1) localized temperature quantification, to be built within a single ca. 25 nm nanoparticle. Importantly, all these optical functions operate within the transparent biological window of the NIR spectral region (λexc ∼ 800 nm, λemi ∼ 860 nm), in which light scattering and absorption by tissues and water are minimal. We find NaNdF4 as a core is efficient in absorbing and converting 808 nm light to heat, while NaYF4:1%Nd3+ as a shell is a temperature sensor based on the ratio-metric luminescence reading but an intermediate inert spacer shell, e.g. NaYF4, is necessary to insulate the heat convertor and thermometer by preventing the possible Nd-Nd energy relaxation. Moreover, we notice that while temperature sensitivity and luminescence intensity are optically stable, increased excitation intensity to generate heat above room temperature may saturate the sensing capacity of temperature feedback. We therefore propose a dual beam photoexcitation scheme as a solution for possible light-induced hyperthermia treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...