Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 15(5): e0305423, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38564701

RESUMEN

Serratia marcescens is an opportunistic pathogen historically associated with sudden outbreaks in intensive care units (ICUs) and the spread of carbapenem-resistant genes. However, the ecology of S. marcescens populations in the hospital ecosystem remains largely unknown. We combined epidemiological information of 1,432 Serratia spp. isolates collected from sinks of a large ICU that underwent demographic and operational changes (2019-2021) and 99 non-redundant outbreak/non-outbreak isolates from the same hospital (2003-2019) with 165 genomic data. These genomes were grouped into clades (1-4) and subclades (A and B) associated with distinct species: Serratia nematodiphila (1A), S. marcescens (1B), Serratia bockelmannii (2A), Serratia ureilytica (2B), S. marcescens/Serratia nevei (3), and S. nevei (4A and 4B). They may be classified into an S. marcescens complex (SMC) due to the similarity between/within subclades (average nucleotide identity >95%-98%), with clades 3 and 4 predominating in our study and publicly available databases. Chromosomal AmpC ß-lactamase with unusual basal-like expression and prodigiosin-lacking species contrasted classical features of Serratia. We found persistent and coexisting clones in sinks of subclades 4A (ST92 and ST490) and 4B (ST424), clonally related to outbreak isolates carrying blaVIM-1 or blaOXA-48 on prevalent IncL/pB77-CPsm plasmids from our hospital since 2017. The distribution of SMC populations in ICU sinks and patients reflects how Serratia species acquire, maintain, and enable plasmid evolution in both "source" (permanent, sinks) and "sink" (transient, patients) hospital patches. The results contribute to understanding how water sinks serve as reservoirs of Enterobacterales clones and plasmids that enable the persistence of carbapenemase genes in healthcare settings, potentially leading to outbreaks and/or hospital-acquired infections.IMPORTANCEThe "hospital environment," including sinks and surfaces, is increasingly recognized as a reservoir for bacterial species, clones, and plasmids of high epidemiological concern. Available studies on Serratia epidemiology have focused mainly on outbreaks of multidrug-resistant species, overlooking local longitudinal analyses necessary for understanding the dynamics of opportunistic pathogens and antibiotic-resistant genes within the hospital setting. This long-term genomic comparative analysis of Serratia isolated from the ICU environment with isolates causing nosocomial infections and/or outbreaks within the same hospital revealed the coexistence and persistence of Serratia populations in water reservoirs. Moreover, predominant sink strains may acquire highly conserved and widely distributed plasmids carrying carbapenemase genes, such as the prevalent IncL-pB77-CPsm (pOXA48), persisting in ICU sinks for years. The work highlights the relevance of ICU environmental reservoirs in the endemicity of certain opportunistic pathogens and resistance mechanisms mainly confined to hospitals.


Asunto(s)
Infección Hospitalaria , Unidades de Cuidados Intensivos , Infecciones por Serratia , Serratia marcescens , Serratia marcescens/genética , Serratia marcescens/aislamiento & purificación , Serratia marcescens/clasificación , Infecciones por Serratia/epidemiología , Infecciones por Serratia/microbiología , Humanos , Infección Hospitalaria/microbiología , Infección Hospitalaria/epidemiología , Brotes de Enfermedades , Genoma Bacteriano , Hospitales , Filogenia , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , beta-Lactamasas/genética , Pruebas de Sensibilidad Microbiana
3.
mSphere ; 6(6): e0086821, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34935444

RESUMEN

This is a longitudinal study comprising 649 Escherichia coli isolates representing all 7,165 E. coli bloodstream infection (BSI) episodes recorded in a hospital (1996 to 2016). Strain analysis included clonal identification (phylogenetic groups/subgroups, STc131 subclades, pulsed-field gel electrophoresis [PFGE], and whole-genome sequencing [WGS]), antibiotic susceptibility (13 antibiotics), and virulence-associated genes (VAGs; 29 genes). The incidence of E. coli BSI increased from 1996 to 2016 (5.5 to 10.8 BSI episodes/1,000 hospitalizations, average 7 to 8/1,000). B2 isolates predominate (53%), with subgroups B2-I (STc131), B2-II, B2-IX, and B2-VI representing 25%, 25%, 14%, and 9%, respectively. Intertwined waves of community-acquired (CA) plus health care-associated and community-onset health care-associated (HCA) and hospital-acquired (HA) episodes of both B2 and non-B2 phylogroups occurred. A remarkable increase was observed only for B2-I-STc131 (C1/C2 subclades), with oscillations for other B2 subgroups and phylogroups throughout the years. Epidemic and persistent clones (comprising isolates with highly similar/identical PFGE types and genomes differing in 6 to 173 single nucleotide polymorphisms [SNPs]) of B2-I (STc131), B2-II (STc73), B2-III (STc127), B2-IX (STc95), and B2-VI (STc12) were recovered from different patients, most at hospital admission, for long periods (2 to 17 years), and extended-spectrum beta-lactamase (ESBL) producers or resistance to ciprofloxacin in B2 isolates was almost restricted to B2-I (STc131) subclade C. STc131 contributed to increasing the B2 rates but only transiently altered the E. coli population structure. The increase of E. coli BSI was determined by waves of CA+HCA BSI episodes that predate the waves of HA BSI. Besides the risk of hospital transmission that led to temporal increases in BSI, this study suggests that E. coli populations/clones from community-based healthy individuals may occasionally have an epidemic structure and provide a source of transmissible strains influencing the HA BSI incidence. IMPORTANCE Sepsis is the third leading cause of mortality in Western countries and one of the Global Health Threats recognized by the WHO since 2017. Despite Escherichia coli constituting the most common cause of bloodstream infections (BSI), its epidemiology is not fully understood, in part due to the scarcity of local and longitudinal studies. Our work analyzes the long-term dynamics of E. coli causing bacteremia in a single institution and reveals waves of different clonal lineages that emerge periodically and successfully spread afterward in both the community and hospitals. Because the origin of E. coli bloodstream infections is the gut, the microbiota of healthy individuals might occasionally have an epidemic structure, providing a source of E. coli strains to influence the incidence of hospital BSI. The study complements previous fractionated observations focusing on specific E. coli lineages or antibiotic-resistant isolates in the last decades and helps to understand the epidemiology of E. coli BSI and the dynamics of pandemic clones.


Asunto(s)
Ciprofloxacina/farmacología , Infecciones por Escherichia coli/epidemiología , Escherichia coli/genética , Filogenia , Sepsis/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antibacterianos/farmacología , Niño , Preescolar , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Femenino , Microbioma Gastrointestinal , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Sepsis/microbiología , España/epidemiología , Centros de Atención Terciaria , Virulencia/genética , Factores de Virulencia/genética , Secuenciación Completa del Genoma , Adulto Joven
4.
Eur J Clin Microbiol Infect Dis ; 40(12): 2593-2596, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34363530

RESUMEN

A comparative analysis of the performance of the new selective chromogenic CHROMagar™-Serratia culture medium for detection and isolation of Serratia marcescens was undertaken. A total of 134 clinical isolates (95 S. marcescens with and without carbapenemase production and 39 non-S. marcescens isolates) and 96 epidemiological samples (46 rectal swabs and 50 from environmental surfaces) were studied. Diagnostic values when compared with CHROMagar™-Orientation medium were 96.8% sensitivity, 100% specificity, 100% positive predictive value and 88.5% negative predictive value. In conclusion, CHROMagar™-Serratia shows an excellent ability for differentiation of S. marcescens among clinical isolates and in environmental samples.


Asunto(s)
Técnicas Bacteriológicas/métodos , Medios de Cultivo/química , Infecciones por Serratia/microbiología , Serratia marcescens/crecimiento & desarrollo , Serratia marcescens/aislamiento & purificación , Agar/química , Agar/metabolismo , Técnicas Bacteriológicas/instrumentación , Compuestos Cromogénicos/química , Compuestos Cromogénicos/metabolismo , Medios de Cultivo/metabolismo , Humanos , Infecciones por Serratia/diagnóstico , Serratia marcescens/metabolismo
5.
Front Microbiol ; 10: 2892, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921068

RESUMEN

Antibiotic resistance is a field in which the concept of One Health can best be illustrated. One Health is based on the definition of communication spaces among diverse environments. Antibiotic resistance is encoded by genes, however, these genes are propagated in mobile genetic elements (MGEs), circulating among bacterial species and clones that are integrated into the multiple microbiotas of humans, animals, food, sewage, soil, and water environments, the One Health microbiosphere. The dynamics and evolution of antibiotic resistance depend on the communication networks linking all these ecological, biological, and genetic entities. These communications occur by environmental overlapping and merging, a critical issue in countries with poor sanitation, but also favored by the homogenizing power of globalization. The overwhelming increase in the population of highly uniform food animals has contributed to the parallel increase in the absolute size of their microbiotas, consequently enhancing the possibility of microbiome merging between humans and animals. Microbial communities coalescence might lead to shared microbiomes in which the spread of antibiotic resistance (of human, animal, or environmental origin) is facilitated. Intermicrobiome communication is exerted by shuttle bacterial species (or clones within species) belonging to generalist taxa, able to multiply in the microbiomes of various hosts, including humans, animals, and plants. Their integration into local genetic exchange communities fosters antibiotic resistance gene flow, following the channels of accessory genome exchange among bacterial species. These channels delineate a topology of gene circulation, including dense clusters of species with frequent historical and recent exchanges. The ecological compatibility of these species, sharing the same niches and environments, determines the exchange possibilities. In summary, the fertility of the One Health approach to antibiotic resistance depends on the progress of understanding multihierarchical systems, encompassing communications among environments (macro/microaggregates), among microbiotas (communities), among bacterial species (clones), and communications among MGEs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...