Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 18(46): 8748-8755, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36349749

RESUMEN

Quantifying the nanomechanical properties of soft-matter using multi-frequency atomic force microscopy (AFM) is crucial for studying the performance of polymers, ultra-thin coatings, and biological systems. Such characterization processes often make use of cantilever's spectral components to discern nanomechanical properties within a multi-parameter optimization problem. This could inadvertently lead to an over-determined parameter estimation with no clear relation between the identified parameters and their influence on the experimental data. In this work, we explore the sensitivity of viscoelastic characterization in polymeric samples to the experimental observables of multi-frequency intermodulation AFM. By performing simulations and experiments we show that surface viscoelasticity has negligible effect on the experimental data and can lead to inconsistent and often non-physical identified parameters. Our analysis reveals that this lack of influence of the surface parameters relates to a vanishing gradient and non-convexity while minimizing the objective function. By removing the surface dependency from the model, we show that the characterization of bulk properties can be achieved with ease and without any ambiguity. Our work sheds light on the sensitivity issues that can be faced when optimizing for a large number of parameters and observables in AFM operation, and calls for the development of new viscoelastic models at the nanoscale and improved computational methodologies for nanoscale mapping of viscoelasticity using AFM.

2.
Soft Matter ; 18(15): 2910-2919, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35352073

RESUMEN

Metamaterials can display unusual and superior properties that come from their carefully designed structure rather than their composition. Metamaterials have permeated large swatches of science, including electromagnetics and mechanics. Although metamaterials hold the promise for realizing technological advances, their potential to enhance interactions between humans and materials has largely remained unexplored. Here, we devise a class edible mechanical metamaterials with tailored fracture properties to control mouthfeel sensory experience. Using chocolate as a model material, we first demonstrate how to create and control the fracture anisotropy, and the number of cracks, and demonstrate that these properties are captured in mouthfeel experience. We further use topology optimization to rationally design edible metamaterials with maximally anisotropic fracture strength. Our work opens avenues for the use of metamaterials to control fracture and to enhance human-matter interactions.


Asunto(s)
Anisotropía , Humanos
3.
Sci Rep ; 3: 1649, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23575957

RESUMEN

The last few years have seen the proliferation of measures that quantify the scientific output of researchers. Yet, most of these measures focus on productivity, thus fostering the "publish or perish" paradigm. This article proposes a measure that aims at quantifying the impact of research de-emphasizing productivity, thus providing scientists an alternative, conceivably fairer, evaluation of their work. The measure builds from a published manuscript, the literature's most basic building block. The impact of an article is defined as the number of lead authors that have been influenced by it. Thus, the measure aims at quantifying the manuscript's reach, putting emphasis on scientists rather than on raw citations. The measure is then extrapolated to researchers and institutions.


Asunto(s)
Algoritmos , Factor de Impacto de la Revista , Publicaciones Periódicas como Asunto , Investigación/clasificación , Investigación/estadística & datos numéricos , Bibliometría
4.
J Agric Food Chem ; 56(15): 6227-31, 2008 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-18564851

RESUMEN

In this paper, a method for the extraction of high purity lycopene from tomato wastes is presented. The method is based on a pressurized extraction that uses the Extractor Naviglio, and it is performed in the 0.7-0.9 MPa range. Tomato skin, the byproduct deriving from manufacturing of tomato, in a water dispersion, are used as starting material. Lycopene is transferred, for the effect of the high pressure used, in the form of molecular aggregates into the water as a dispersion, while apolar compounds remain in the matrix. The aggregates are easily purified in a single subsequent step by using methanol, thus, obtaining lycopene at 98% chromatographic purity or higher. A new stationary phase, phenyl-hexyl silicone, and a simple water/acetonitrile gradient were used for HPLC analysis of lycopene. The extract was characterized by UV-Vis spectrophotometry, (1)H NMR, (13)C NMR, and electrospray ionization mass spectrometry. An average recovery of 2.8 mg lycopene/kg tomato waste can be obtained after 4 hours of extraction and using tap water as the extracting liquid. The recovery percentage was of about 10%. The exhausted tomato byproduct can be easily dried and used in agriculture or as feeding for animals.


Asunto(s)
Carotenoides/aislamiento & purificación , Frutas/química , Solanum lycopersicum/química , Carotenoides/análisis , Cromatografía Líquida de Alta Presión/métodos , Residuos Industriales/análisis , Licopeno , Espectroscopía de Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...