Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Intervalo de año de publicación
1.
Science ; 377(6613): 1440-1444, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36137034

RESUMEN

Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)-even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth's surface.


Asunto(s)
Bosques , Calentamiento Global , Isópteros , Madera , Animales , Ciclo del Carbono , Temperatura , Clima Tropical , Madera/microbiología
2.
Nature ; 597(7874): 77-81, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34471275

RESUMEN

The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.


Asunto(s)
Ciclo del Carbono , Bosques , Insectos/metabolismo , Árboles/metabolismo , Animales , Secuestro de Carbono , Clima , Ecosistema , Mapeo Geográfico , Cooperación Internacional
3.
Bot Rev ; 86(2): 93-118, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32836310

RESUMEN

Ligustrum lucidum is a highly invasive East Asian tree that successfully colonizes several subtropical and temperate areas around the world. Its invasion capacity results from a widespread human use mostly in urban and periurban settings, very abundant fruit and seed production, small bird-dispersed fruits, high germination rates, resprouting capacity, fast growth rates, low herbivory levels and tolerance to a wide range of light, temperature and soil. All these traits contribute to its ability to rapidly increase in abundance, alter biodiversity, landscape ecology and limit its management. This paper reviews the current knowledge on L. lucidum with particular focus on its uses, distribution, invasiveness, ecological and economic impacts and control measures. Most relevant aspect of the review highlight the negative ecological impacts of L. lucidum, its potential to continue expanding its range of distribution and the need of further studies on the eco-physiology of the species, economic impact and social perception of its invasion and early warning systems.

4.
Antonie Van Leeuwenhoek ; 110(9): 1207-1218, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28553697

RESUMEN

The impact of plant species invasions on the abundance, composition and activity of fungal decomposers of leaf litter is poorly understood. In this study, we isolated and compared the relative abundance of ligninocellulolytic fungi of leaf litter mixtures from a native forest and a forest invaded by Ligustrum lucidum in a lower mountain forest of Tucuman, Argentina. In addition, we evaluated the relationship between the relative abundance of ligninocellulolytic fungi and properties of the soil of both forest types. Finally, we identified lignin degrading fungi and characterized their polyphenol oxidase activities. The relative abundance of ligninocellulolytic fungi was higher in leaf litter mixtures from the native forest. The abundance of cellulolytic fungi was negatively related with soil pH while the abundance of ligninolytic fungi was positively related with soil humidity. We identified fifteen genera of ligninolytic fungi; four strains were isolated from both forest types, six strains only from the invaded forest and five strains were isolated only from the native forest. The results found in this study suggest that L. Lucidum invasion could alter the abundance and composition of fungal decomposers. Long-term studies that include an analysis of the nutritional quality of litter are needed, for a more complete overview of the influence of L. Lucidum invasion on fungal decomposers and on leaf litter decomposition.


Asunto(s)
Biodiversidad , Hongos/clasificación , Hongos/metabolismo , Lignina/metabolismo , Hojas de la Planta/microbiología , Árboles/microbiología , Argentina , Recuento de Colonia Microbiana , ADN de Hongos/genética , Bosques , Hongos/genética , Hongos/crecimiento & desarrollo , Especies Introducidas , Ligustrum/microbiología , Suelo/química
5.
AoB Plants ; 2016 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-28039118

RESUMEN

Evolutionary processes greatly impact the outcomes of biological invasions. An extensive body of research suggests that invasive populations often undergo phenotypic and ecological divergence from their native sources. Evolution also operates at different and distinct stages during the invasion process. Thus, it is important to incorporate evolutionary change into frameworks of biological invasions because it allows us to conceptualize how these processes may facilitate or hinder invasion success. Here, we review such processes, with an emphasis on tree invasions, and place them in the context of the unified framework for biological invasions. The processes and mechanisms described are pre-introduction evolutionary history, sampling effect, founder effect, genotype-by-environment interactions, admixture, hybridization, polyploidization, rapid evolution, epigenetics, and second-genomes. For the last, we propose that co-evolved symbionts, both beneficial and harmful, which are closely physiologically associated with invasive species, contain critical genetic traits that affect the evolutionary dynamics of biological invasions. By understanding the mechanisms underlying invasion success, researchers will be better equipped to predict, understand, and manage biological invasions.

6.
Microb Ecol ; 57(4): 740-8, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-18797956

RESUMEN

Cool-season grasses establish symbioses with vertically transmitted Neotyphodium endophytes widespread in nature. The frequency of endophyte-infected plants in closed populations (i.e., without migrations) depends on both the differential fitness between infected and non-infected plants, and the endophyte-transmission efficiency. Most studies have been focused on the first mechanism ignoring the second. Infection frequency and endophyte transmission from vegetative tissues to seeds were surveyed in two grasses growing in vegetation units that differ in flood and grazing regimes, and soil salinity. Transmission efficiency and infection frequency for tall fescue did not vary significantly and were 0.98 and 1.00, respectively. For Italian ryegrass, transmission efficiency and infection frequency were 0.88 and 0.57 in humid prairies, and 0.96 and 0.96 in the other vegetation units. Only in humid mesophytic meadows, the observed pattern was irrespective of the presence or absence of grazers. Our results suggest that selection forces for endophyte infection are different for both species. Imperfect transmission was only compensated in tall fescue through an increased fitness of infected plants. Interpreting variations of infection frequency only in terms of differential fitness can be misleading, considering that endophyte transmission can be imperfect and variable in nature. Therefore, this study highlights the importance of measuring transmission efficiency.


Asunto(s)
Ecosistema , Neotyphodium/fisiología , Poaceae/microbiología , Microbiología del Suelo , Simbiosis , Animales , Argentina , Bovinos , Inundaciones , Semillas/microbiología
7.
Sensors (Basel) ; 8(9): 5397-5425, 2008 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-27873821

RESUMEN

In the last decades, South American ecosystems underwent important functional modifications due to climate alterations and direct human intervention on land use and land cover. Among remotely sensed data sets, NOAA-AVHRR "Normalized Difference Vegetation Index" (NDVI) represents one of the most powerful tools to evaluate these changes thanks to their extended temporal coverage. In this paper we explored the possibilities and limitations of three commonly used NOAA-AVHRR NDVI series (PAL, GIMMS and FASIR) to detect ecosystem functional changes in the South American continent. We performed pixel-based linear regressions for four NDVI variables (average annual, maximum annual, minimum annual and intra-annual coefficient of variation) for the 1982-1999 period and (1) analyzed the convergences and divergences of significant multi-annual trends identified across all series, (2) explored the degree of aggregation of the trends using the O-ring statistic, and (3) evaluated observed trends using independent information on ecosystem functional changes in five focal regions. Several differences arose in terms of the patterns of change (the sign, localization and total number of pixels with changes). FASIR presented the highest proportion of changing pixels (32.7%) and GIMMS the lowest (16.2%). PAL and FASIR data sets showed the highest agreement, with a convergence of detected trends on 71.2% of the pixels. Even though positive and negative changes showed substantial spatial aggregation, important differences in the scale of aggregation emerged among the series, with GIMMS showing the smaller scale (≤11 pixels). The independent evaluations suggest higher accuracy in the detection of ecosystem changes among PAL and FASIR series than with GIMMS, as they detected trends that match expected shifts. In fact, this last series eliminated most of the long term patterns over the continent. For example, in the "Eastern Paraguay" and "Uruguay River margins" focal regions, the extensive changes due to land use and land cover change expansion were detected by PAL and FASIR, but completely ignored by GIMMS. Although the technical explanation of the differences remains unclear and needs further exploration, we found that the evaluation of this type of remote sensing tools should not only be focused at the level of assumptions (i.e. physical or mathematical aspects of image processing), but also at the level of results (i.e. contrasting observed patterns with independent proofs of change). We finally present the online collaborative initiative "Land ecosystem change utility for South America", which facilitates this type of evaluations and helps to identify the most important functional changes of the continent.

8.
Rev. biol. trop ; 51(1): 59-70, mar. 2003. tab, graf
Artículo en Inglés | LILACS | ID: lil-365954

RESUMEN

Currently biological invasions are considered one of the world's most serious conservation problems. Ligustrum lucidum is the most abundant exotic tree in secondary forest patches of montane forests of NW Argentina. We studied the determinants of success of the early stages of its life cycle in distinct habitat types, with the hope of identifying vulnerabilities that could be exploited to control the invasion. Seed arrival, germination, seedling recruitment and survival, and sapling growth were studied in edges, gaps and forest interior. Seed arrival was also assessed under perches and in open fields. Germination was studied in forest and grassland patches. L. lucidum seedling survival and sapling growth were compared with the most abundant native species survival and growth. Seed arrival was strongly seasonal with a peak in mid-August. Seed rain did not differ significantly among habitat types, however there was a tendency for edges to receive more seeds when only dispersed seeds were considered. Perches strongly enhanced seed arrival; more than 40 times the number of seeds were dispersed beneath citrus plants (i.e. perches) than found in paired open areas. In the forest, seeds in gaps and edges had higher germination rates, but there was no difference in seedling survival. Fruits under closed canopy exhibited the lowest germination. Germination and survival were low in open areas. Neither seedling recruitment nor sapling growth differed between gaps and forest interior. L. lucidum saplings grew significantly more than saplings of the most common native species, and also showed higher seedling survival. L. lucidum is a prolific fruit producer, is capable of germinating and surviving in a broad range of forest environments, it is relatively shade tolerant and has higher survival and faster growth rate in comparison to the most common native species. All these characteristics highlight its potency as a successful invader, and point to few vulnerabilities that could be targets of control measures.


Asunto(s)
Ligustrum , Argentina , Germinación , Dinámica Poblacional , Estaciones del Año , Semillas , Análisis de Supervivencia
9.
Rev Biol Trop ; 51(1): 59-70, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15162681

RESUMEN

Currently biological invasions are considered one of the world's most serious conservation problems. Ligustrum lucidum is the most abundant exotic tree in secondary forest patches of montane forests of NW Argentina. We studied the determinants of success of the early stages of its life cycle in distinct habitat types, with the hope of identifying vulnerabilities that could be exploited to control the invasion. Seed arrival, germination, seedling recruitment and survival, and sapling growth were studied in edges, gaps and forest interior. Seed arrival was also assessed under perches and in open fields. Germination was studied in forest and grassland patches. L. lucidum seedling survival and sapling growth were compared with the most abundant native species survival and growth. Seed arrival was strongly seasonal with a peak in mid-August. Seed rain did not differ significantly among habitat types, however there was a tendency for edges to receive more seeds when only dispersed seeds were considered. Perches strongly enhanced seed arrival; more than 40 times the number of seeds were dispersed beneath citrus plants (i.e. perches) than found in paired open areas. In the forest, seeds in gaps and edges had higher germination rates, but there was no difference in seedling survival. Fruits under closed canopy exhibited the lowest germination. Germination and survival were low in open areas. Neither seedling recruitment nor sapling growth differed between gaps and forest interior. L. lucidum saplings grew significantly more than saplings of the most common native species, and also showed higher seedling survival. L. lucidum is a prolific fruit producer, is capable of germinating and surviving in a broad range of forest environments, it is relatively shade tolerant and has higher survival and faster growth rate in comparison to the most common native species. All these characteristics highlight its potency as a successful invader, and point to few vulnerabilities that could be targets of control measures.


Asunto(s)
Ligustrum/fisiología , Argentina , Germinación/fisiología , Ligustrum/crecimiento & desarrollo , Dinámica Poblacional , Estaciones del Año , Semillas/fisiología , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...