Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 121(4): 1422-1434, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38225905

RESUMEN

Acoustic levitation, which allows contactless manipulation of micro-objects with ultrasounds, is a promising technique for spheroids formation and culture. This acoustofluidic technique favors cell-cell interactions, away from the walls of the chip, which leads to the spontaneous self-organization of cells. Using this approach, we generated spheroids of mesenchymal stromal cells, hepatic and endothelial cells, and showed that long-term culture of cells in acoustic levitation is feasible. We also demonstrated that this self-organization and its dynamics depended weakly on the acoustic parameters but were strongly dependent on the levitated cell type. Moreover, spheroid organization was modified by actin cytoskeleton inhibitors or calcium-mediated interaction inhibitors. Our results confirmed that acoustic levitation is a rising technique for fundamental research and biotechnological industrial application in the rapidly growing field of microphysiological systems. It allowed easily obtaining spheroids of specific and predictable shape and size, which could be cultivated over several days, without requiring hydrogels or extracellular matrix.


Asunto(s)
Células Madre Mesenquimatosas , Esferoides Celulares , Humanos , Células Endoteliales , Acústica , Matriz Extracelular
2.
Sci Rep ; 13(1): 18283, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880340

RESUMEN

Tissue engineering is a promising alternative to current full thickness circumferential esophageal replacement methods. The aim of our study was to develop a clinical grade Decellularized Human Esophagus (DHE) for future clinical applications. After decontamination, human esophagi from deceased donors were placed in a bioreactor and decellularized with sodium dodecyl sulfate (SDS) and ethylendiaminetetraacetic acid (EDTA) for 3 days. The esophagi were then rinsed in sterile water and SDS was eliminated by filtration on an activated charcoal cartridge for 3 days. DNA was removed by a 3-hour incubation with DNase. A cryopreservation protocol was evaluated at the end of the process to create a DHE cryobank. The decellularization was efficient as no cells and nuclei were observed in the DHE. Sterility of the esophagi was obtained at the end of the process. The general structure of the DHE was preserved according to immunohistochemical and scanning electron microscopy images. SDS was efficiently removed, confirmed by a colorimetric dosage, lack of cytotoxicity on Balb/3T3 cells and mesenchymal stromal cell long term culture. Furthermore, DHE did not induce lymphocyte proliferation in-vitro. The cryopreservation protocol was safe and did not affect the tissue, preserving the biomechanical properties of the DHE. Our decellularization protocol allowed to develop the first clinical grade human decellularized and cryopreserved esophagus.


Asunto(s)
Matriz Extracelular , Andamios del Tejido , Ratones , Animales , Humanos , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Criopreservación , Dodecil Sulfato de Sodio/química , Esófago
3.
Sci Rep ; 13(1): 13512, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598252

RESUMEN

Endothelial cells cover the lining of different blood vessels and lymph nodes, and have major functions including the transport of blood, vessel homeostasis, inflammatory responses, control of transendothelial migration of circulating cells into the tissues, and formation of new blood vessels. Therefore, understanding these cells is of major interest. The morphological features, phenotype and function of endothelial cells varies according to the vascular bed examined. The sialomucin, CD34, is widely used as an endothelial marker. However, CD34 is differentially expressed on endothelial cells in different organs and in pathological conditions. Little is known about regulation of endothelial CD34 expression or function. Expression of CD34 is also strongly regulated in-vitro in endothelial cell models, including human umbilical vein endothelial cells (HUVEC) and endothelial colony forming cells (ECFC). We have therefore analysed the expression and function of CD34 by comparing CD34high and CD34low endothelial cell subpopulations. Transcriptomic analysis showed that CD34 gene and protein expressions are highly correlated, that CD34high cells proliferate less but express higher levels of IL-33 and Angiopoietin 2, compared with CD34low cells. Higher secretion levels of IL-33 and Angiopoietin 2 by CD34high HUVECs was confirmed by ELISA. Finally, when endothelial cells were allowed to interact with peripheral blood mononuclear cells, CD34high endothelial cells activated stronger proliferation of regulatory T lymphocytes (Tregs) compared to CD34low cells whereas expansion of other CD4+-T cell subsets was equivalent. These results suggest that CD34 expression by endothelial cells in-vitro associates with their ability to proliferate and with an immunogenic ability that favours the tolerogenic response.


Asunto(s)
Angiopoyetina 2 , Interleucina-33 , Humanos , Leucocitos Mononucleares , Antígenos CD34 , Moléculas de Adhesión Celular , Células Endoteliales de la Vena Umbilical Humana
4.
Stem Cell Res Ther ; 13(1): 300, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35841029

RESUMEN

BACKGROUND: Myelomeningocele (MMC) is a spinal cord congenital defect that leads to paraplegia, sphincter disorders and potential neurocognitive disabilities. Prenatal surgery of MMC provides a significant benefit compared to surgery at birth. Mesenchymal stromal cell (MSC) therapy as an adjuvant treatment for prenatal surgery showed promising results in animal experiments which could be considered for clinical use in human fetuses. Despite numerous reassuring studies on the safety of MSCs administration in humans, no study focused on MSCs biodistribution after a local MSCs graft on the fetal spinal cord. AIM: The purpose of our study was to assess the biodistribution of umbilical cord-derived mesenchymal stromal cells (UC-MSCs) at birth in lambs who had a prenatal myelomeningocele repair using a fibrin patch seeded with allogenic UC-MSCs. METHODS: After isolation, UC-MSCs were tagged using a green fluorescent protein (GFP)-containing lentiviral vector. MMC defects were surgically created at 75 days of gestation and repaired 15 days later using UC-MSCs patch. Lambs were delivered at 142 days and sacrificed. DNA extraction was performed among biopsies of the different organs and q-PCR analysis was used to detect the expression of GFP (GFP DNA coding sequence). RESULTS: In our 6 surviving lambs grafted with UC-MSCs, GFP lentivirus genomic DNA was not detected in the organs. CONCLUSION: These reassuring data will support translational application in humans, especially since the first human clinical trial using mesenchymal stromal cells for in-utero treatment of MMC started recently in U.S.A.


Asunto(s)
Meningomielocele , Células Madre Mesenquimatosas , Animales , Femenino , Feto/metabolismo , Humanos , Meningomielocele/metabolismo , Meningomielocele/cirugía , Células Madre Mesenquimatosas/metabolismo , Embarazo , Ovinos , Oveja Doméstica , Distribución Tisular , Cordón Umbilical/metabolismo
5.
Surgery ; 171(2): 384-392, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34392978

RESUMEN

BACKGROUND: Tissue engineering is an attractive alternative to conventional esophageal replacement techniques using intra-abdominal organs which are associated with a substantial morbidity. The objective was to evaluate the feasibility of esophageal replacement by an allogenic decellularized esophagus in a porcine model. Secondary objectives were to evaluate the benefit of decellularized esophagus recellularization with autologous bone marrow mesenchymal stromal cells and omental maturation of the decellularized esophagus. METHODS: Eighteen pigs divided into 4 experimental groups according to mesenchymal stromal cells recellularization and omental maturation underwent a 5-cm long circumferential replacement of the thoracic esophagus. Turbo green florescent protein labelling was used for in vivo mesenchymal stromal cells tracking. The graft area was covered by a stent for 3 months. Clinical and histologic outcomes were analyzed over a 6-month period. RESULTS: The median follow-up was 112 days [5; 205]. Two animals died during the first postoperative month, 2 experienced an anastomotic leakage, 13 experienced a graft area stenosis following stent migration of which 3 were sacrificed as initially planned after successful endoscopic treatment. The stent could be removed in 2 animals: the graft area showed a continuous mucosa without stenosis. After 3 months, the graft area showed a tissue specific regeneration with a mature epithelium and muscular cells. Clinical and histologic results were similar across experimental groups. CONCLUSION: Circumferential esophageal replacement by a decellularized esophagus was feasible and allowed tissue remodeling toward an esophageal phenotype. We could not demonstrate any benefit provided by the omental maturation of the decellularized esophagus nor its recellularization with mesenchymal stromal cells.


Asunto(s)
Esófago/anatomía & histología , Esófago/cirugía , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Estudios de Factibilidad , Femenino , Trasplante de Células Madre Mesenquimatosas , Modelos Animales , Epiplón/citología , Stents , Porcinos , Trasplante Autólogo
6.
Adv Exp Med Biol ; 1345: 7-15, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34582010

RESUMEN

In pathologies of the esophagus such as esophageal atresia, cancers and caustic injuries, methods for full thickness esophageal replacement require the sacrifice of healthy intra-abdominal organs such as the stomach and the colon. These methods are associated with high morbidity, mortality and poor functional results. The reconstruction of an esophageal segment by tissue engineering (TE) could answer this problem. For esophageal TE, this approach has been explored mainly by a combination of matrices and cells. In this chapter, we will discuss the studies on full organ esophageal decellularization, including the animal models, the methods of decellularization and recellularization.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Animales , Colon , Esófago
8.
Sci Rep ; 11(1): 8355, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863936

RESUMEN

In recent years, 3D cell culture models such as spheroid or organoid technologies have known important developments. Many studies have shown that 3D cultures exhibit better biomimetic properties compared to 2D cultures. These properties are important for in-vitro modeling systems, as well as for in-vivo cell therapies and tissue engineering approaches. A reliable use of 3D cellular models still requires standardized protocols with well-controlled and reproducible parameters. To address this challenge, a robust and scaffold-free approach is proposed, which relies on multi-trap acoustic levitation. This technology is successfully applied to Mesenchymal Stem Cells (MSCs) maintained in acoustic levitation over a 24-h period. During the culture, MSCs spontaneously self-organized from cell sheets to cell spheroids with a characteristic time of about 10 h. Each acoustofluidic chip could contain up to 30 spheroids in acoustic levitation and four chips could be ran in parallel, leading to the production of 120 spheroids per experiment. Various biological characterizations showed that the cells inside the spheroids were viable, maintained the expression of their cell surface markers and had a higher differentiation capacity compared to standard 2D culture conditions. These results open the path to long-time cell culture in acoustic levitation of cell sheets or spheroids for any type of cells.


Asunto(s)
Acústica , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Esferoides Celulares , Ingeniería de Tejidos/métodos , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Fluoresceínas , Humanos , Propidio , Factores de Tiempo
9.
Biomaterials ; 267: 120465, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33129189

RESUMEN

In esophageal pathologies, such as esophageal atresia, cancers, caustic burns, or post-operative stenosis, esophageal replacement is performed by using parts of the gastrointestinal tract to restore nutritional autonomy. However, this surgical procedure most often does not lead to complete functional recovery and is instead associated with many complications resulting in a decrease in the quality of life and survival rate. Esophageal tissue engineering (ETE) aims at repairing the defective esophagus and is considered as a promising therapeutic alternative. Noteworthy progress has recently been made in the ETE research area but strong challenges remain to replicate the structural and functional integrity of the esophagus with the approaches currently being developed. Within this context, 3D bioprinting is emerging as a new technology to facilitate the patterning of both cellular and acellular bioinks into well-organized 3D functional structures. Here, we present a comprehensive overview of the recent advances in tissue engineering for esophageal reconstruction with a specific focus on 3D bioprinting approaches in ETE. Current biofabrication techniques and bioink features are highlighted, and these are discussed in view of the complexity of the native esophagus that the designed substitute needs to replace. Finally, perspectives on recent strategies for fabricating other tubular organ substitutes via 3D bioprinting are discussed briefly for their potential in ETE applications.


Asunto(s)
Bioimpresión , Esófago/cirugía , Impresión Tridimensional , Calidad de Vida , Ingeniería de Tejidos , Andamios del Tejido
10.
J Tissue Eng Regen Med ; 13(12): 2191-2203, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31670903

RESUMEN

In pathologies of the esophagus such as esophageal atresia, cancers, and caustic injuries, methods for full thickness esophageal replacement require the sacrifice of healthy intra-abdominal organs such as the stomach and the colon and are associated with high morbidity, mortality, and poor functional results. To overcome these problems, tissue engineering methods are developed to create a substitute with scaffolds and cells. The aim of this study was to develop a simple and safe decellularization process in order to obtain a clinical grade esophageal extracellular matrix. Following the decontamination step, porcine esophagi were decellularized in a bioreactor with sodium dodecyl sulfate and ethylenediaminetetraacetic acid for 3 days and were rinsed with deionized water. DNA was eliminated by a 3-hr DNase treatment. To remove any residual detergent, the matrix was then incubated with an absorbing resin. The resulting porcine esophageal matrix was characterized by the assessment of the efficiency of the decellularization process (DNA quantification), evaluation of sterility and absence of cytotoxicity, and its composition and biomechanical properties, as well as the possibility to be reseeded with mesenchymal stem cells. Complete decellularization with the preservation of the general structure, composition, and biomechanical properties of the native esophageal matrix was obtained. Sterility was maintained throughout the process, and the matrix showed no cytotoxicity. The resulting matrix met clinical grade criteria and was successfully reseeded with mesenchymal stem cells..


Asunto(s)
Esófago/química , Matriz Extracelular/química , Ensayo de Materiales , Células Madre Mesenquimatosas/metabolismo , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Células Madre Mesenquimatosas/citología , Porcinos
11.
Ann N Y Acad Sci ; 1434(1): 156-163, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30088660

RESUMEN

For various esophageal diseases, the search for alternative techniques for tissue repair has led to significant developments in basic and translational research in the field of tissue engineering. Applied to the esophagus, this concept is based on the in vitro combination of elements judged necessary for in vivo implantation to promote esophageal tissue remodeling. Different methods are currently being explored to develop substitutes using cells, scaffolds, or a combination of both, according to the severity of lesions to be treated. In this review, we discuss recent advances in (1) cell sheet technology for preventing stricture after extended esophageal mucosectomy and (2) full-thickness circumferential esophageal replacement using tissue-engineered substitutes.


Asunto(s)
Enfermedades del Esófago , Esófago , Ingeniería de Tejidos/métodos , Animales , Enfermedades del Esófago/metabolismo , Enfermedades del Esófago/patología , Enfermedades del Esófago/fisiopatología , Enfermedades del Esófago/cirugía , Esófago/metabolismo , Esófago/patología , Esófago/fisiopatología , Humanos
12.
Cell Transplant ; 26(12): 1831-1839, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29390879

RESUMEN

Tissue engineering appears promising as an alternative technique for esophageal replacement. Mesenchymal stem cells (MSCs) could be of interest for esophageal regeneration. Evaluation of the ability of an acellular matrix seeded with autologous MSCs to promote tissue remodeling toward an esophageal phenotype after circumferential replacement of the esophagus in a mini pig model. A 3 cm long circumferential replacement of the abdominal esophagus was performed with an MSC-seeded matrix (MSC group, n = 10) versus a matrix alone (control group, n = 10), which has previously been matured into the great omentum. The graft area was covered with an esophageal removable stent. A comparative histological analysis of the graft area after animals were euthanized sequentially is the primary outcome of the study. Histological findings after maturation, overall animal survival, and postoperative morbidity were also compared between groups. At postoperative day 45 (POD 45), a mature squamous epithelium covering the entire surface of the graft area was observed in all the MSC group specimens but in none of the control group before POD 95. Starting at POD 45, desmin positive cells were seen in the graft area in the MSC group but never in the control group. There were no differences between groups in the incidence of surgical complications and postoperative death. In this model, MSCs accelerate the mature re-epitheliazation and early initiation of muscle cell colonization. Further studies will focus on the use of cell tracking tools in order to analyze the becoming of these cells and the mechanisms involved in this tissue regeneration.


Asunto(s)
Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos/métodos , Animales , Esófago/citología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/fisiología , Porcinos , Porcinos Enanos , Andamios del Tejido
13.
J Heart Lung Transplant ; 35(6): 795-807, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27041495

RESUMEN

BACKGROUND: Cell-based therapies are being explored as a therapeutic option for patients with chronic heart failure following myocardial infarction. Extracellular vesicles (EV), including exosomes and microparticles, secreted by transplanted cells may orchestrate their paracrine therapeutic effects. We assessed whether post-infarction administration of EV released by human embryonic stem cell-derived cardiovascular progenitors (hESC-Pg) can provide equivalent benefits to administered hESC-Pg and whether hESC-Pg and EV treatments activate similar endogenous pathways. METHODS: Mice underwent surgical occlusion of their left coronary arteries. After 2-3 weeks, 95 mice included in the study were treated with hESC-Pg, EV, or Minimal Essential Medium Alpha Medium (alpha-MEM; vehicle control) delivered by percutaneous injections under echocardiographic guidance into the peri-infarct myocardium. functional and histologic end-points were blindly assessed 6 weeks later, and hearts were processed for gene profiling. Genes differentially expressed between control hearts and hESC-Pg-treated and EV-treated hearts were clustered into functionally relevant pathways. RESULTS: At 6 weeks after hESC-Pg administration, treated mice had significantly reduced left ventricular end-systolic (-4.20 ± 0.96 µl or -7.5%, p = 0.0007) and end-diastolic (-4.48 ± 1.47 µl or -4.4%, p = 0.009) volumes compared with baseline values despite the absence of any transplanted hESC-Pg or human embryonic stem cell-derived cardiomyocytes in the treated mouse hearts. Equal benefits were seen with the injection of hESC-Pg-derived EV, whereas animals injected with alpha-MEM (vehicle control) did not improve significantly. Histologic examination suggested a slight reduction in infarct size in hESC-Pg-treated animals and EV-treated animals compared with alpha-MEM-treated control animals. In the hESC-Pg-treated and EV-treated groups, heart gene profiling identified 927 genes that were similarly upregulated compared with the control group. Among the 49 enriched pathways associated with these up-regulated genes that could be related to cardiac function or regeneration, 78% were predicted to improve cardiac function through increased cell survival and/or proliferation or DNA repair as well as pathways related to decreased fibrosis and heart failure. CONCLUSIONS: In this post-infarct heart failure model, either hESC-Pg or their secreted EV enhance recovery of cardiac function and similarly affect cardiac gene expression patterns that could be related to this recovery. Although the mechanisms by which EV improve cardiac function remain to be determined, these results support the idea that a paracrine mechanism is sufficient to effect functional recovery in cell-based therapies for post-infarction-related chronic heart failure.


Asunto(s)
Insuficiencia Cardíaca , Animales , Enfermedad Crónica , Células Madre Embrionarias , Vesículas Extracelulares , Humanos , Ratones , Infarto del Miocardio , Miocardio , Miocitos Cardíacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...