Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(17): 5062-5085, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35642454

RESUMEN

Although it is an integral part of global change, most of the research addressing the effects of climate change on forests have overlooked the role of environmental pollution. Similarly, most studies investigating the effects of air pollutants on forests have generally neglected the impacts of climate change. We review the current knowledge on combined air pollution and climate change effects on global forest ecosystems and identify several key research priorities as a roadmap for the future. Specifically, we recommend (1) the establishment of much denser array of monitoring sites, particularly in the South Hemisphere; (2) further integration of ground and satellite monitoring; (3) generation of flux-based standards and critical levels taking into account the sensitivity of dominant forest tree species; (4) long-term monitoring of N, S, P cycles and base cations deposition together at global scale; (5) intensification of experimental studies, addressing the combined effects of different abiotic factors on forests by assuring a better representation of taxonomic and functional diversity across the ~73,000 tree species on Earth; (6) more experimental focus on phenomics and genomics; (7) improved knowledge on key processes regulating the dynamics of radionuclides in forest systems; and (8) development of models integrating air pollution and climate change data from long-term monitoring programs.


Asunto(s)
Contaminación del Aire , Cambio Climático , Contaminación del Aire/efectos adversos , Ecosistema , Bosques , Árboles
2.
Environ Res ; 207: 112218, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34655608

RESUMEN

This study investigates potential influence of urban trees on black carbon (BC) removal by Norway spruce and silver birch along with the BC formation, mass concentration in air, and source apportionment. The main sources of BC in urban areas are transport, household and industry. BC concentrations monitored in urban background station in Vilnius (Lithuania) showed that biomass burning was a significant contributor to BC emissions even during warm period of the year. Therefore, BC emission levels were determined for the most common biomass fuels (mixed wood pellets, oak, ash, birch and spruce firewood) and two types of agro-biomass (triticale and rapeseed straw pellets) burned in modern and old heating systems. The highest emissions were obtained for biomass fuels especially birch firewood. BC aerosol particles produced by the condensation mechanism during the combustion processes were found in all samples taken from the leaf surface. The short-term effect of BC exposure on photosynthetic pigments (chlorophyll a and b; and carotenoids) in the foliage of one-year-old Norway spruce and silver birch seedlings was evaluated by the experiment carried out in the phytotron greenhouse. The seedlings showed different short-term responses to BC exposure. All treatments applied in the phytotron greenhouse resulted in lower chlorophyll content in spruce foliage compared to natural conditions but not differed for birch seedlings. However, the exposure of BC particles on the spruce and birch seedlings in the phytotron increased the content of photosynthetic pigments compared to the control seedlings in the phytotron. Overall, urban trees can help improve air quality by reducing BC levels through dry deposition on tree foliage, and needle-like trees are more efficient than broad-leaved trees in capturing BC. Nevertheless, a further study could assess the longer-term effects of BC particles on tree biochemical and chemical reactions.


Asunto(s)
Contaminantes Atmosféricos , Picea , Contaminantes Atmosféricos/análisis , Betula , Carbono/análisis , Clorofila A , Hollín
3.
Environ Res ; 191: 110193, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32919964

RESUMEN

Studying weekend-weekday variation in ground-level ozone (O3) allows one to better understand O3 formation conditions, with a potential for developing effective strategies for O3 control. Reducing inappropriately the O3 precursors emissions can either produce no reduction or increase surface O3 concentrations. This paper analyzes the weekend-weekday differences of O3 at 300 rural and 808 urban background stations worldwide from 2005 to 2014, in order to investigate the O3 weekend effect over time and assess the effectiveness of the precursors emissions control policies for reducing O3 levels. Data were analyzed with the non-parametric Mann-Kendall test and Theil-Sen estimator. Rural sites typically did not experience a weekend-weekday effect. In all urban stations, the mean O3 concentration on the weekend was 12% higher than on weekdays. Between 2005 and 2014, the annual mean of daily O3 concentrations increased at 74% of urban sites worldwide (+ 0.41 ppb year-1) and decreased in the United Kingdom (- 0.18 ppb year-1). Over this time period, emissions of O3 precursors declined significantly. However, a greater decline in nitrogen oxides (NOx) emissions caused an increase in Volatile Organic Compounds (VOCs) to NOx ratios leading to O3 formation. In France, South Korea and the United Kingdom, most urban stations showed a significant upward trend (+ 1.15% per year) for O3 weekend effect. Conversely, in Canada, Germany, Japan, Italy and the United States, the O3 weekend effect showed a significant downward trend (- 0.26% per year). Further or inappropriate control of anthropogenic emissions in Canada, Southern Europe, Japan, South Korea and the United States might result in increased daily O3 levels in urban areas.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Contaminantes Atmosféricos/análisis , Contaminación del Aire/prevención & control , Canadá , Ciudades , Monitoreo del Ambiente , Europa (Continente) , Francia , Alemania , Italia , Japón , Ozono/análisis , República de Corea , Reino Unido , Estados Unidos
4.
Sci Adv ; 6(33): eabc1176, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32851188

RESUMEN

Elevated tropospheric ozone concentrations induce adverse effects in plants. We reviewed how ozone affects (i) the composition and diversity of plant communities by affecting key physiological traits; (ii) foliar chemistry and the emission of volatiles, thereby affecting plant-plant competition, plant-insect interactions, and the composition of insect communities; and (iii) plant-soil-microbe interactions and the composition of soil communities by disrupting plant litterfall and altering root exudation, soil enzymatic activities, decomposition, and nutrient cycling. The community composition of soil microbes is consequently changed, and alpha diversity is often reduced. The effects depend on the environment and vary across space and time. We suggest that Atlantic islands in the Northern Hemisphere, the Mediterranean Basin, equatorial Africa, Ethiopia, the Indian coastline, the Himalayan region, southern Asia, and Japan have high endemic richness at high ozone risk by 2100.


Asunto(s)
Microbiota , Ozono , Animales , Biodiversidad , Ecosistema , Etiopía , Insectos , Plantas , Suelo/química , Microbiología del Suelo
5.
Environ Res ; 176: 108527, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31203049

RESUMEN

Evaluations of ozone effects on vegetation across the globe over the last seven decades have mostly incorporated exposure levels that were multi-fold the preindustrial concentrations. As such, global risk assessments and derivation of critical levels for protecting plants and food supplies were based on extrapolation from high to low exposure levels. These were developed in an era when it was thought that stress biology is framed around a linear dose-response. However, it has recently emerged that stress biology commonly displays non-linear, hormetic processes. The current biological understanding highlights that the strategy of extrapolating from high to low exposure levels may lead to biased estimates. Here, we analyzed a diverse sample of published empirical data of approximately 500 stimulatory, hormetic-like dose-responses induced by ozone in plants. The median value of the maximum stimulatory responses induced by elevated ozone was 124%, and commonly <150%, of the background response (control), independently of species and response variable. The maximum stimulatory response to ozone was similar among types of response variables and major plant species. It was also similar among clades, between herbaceous and woody plants, between deciduous and evergreen trees, and between annual and perennial herbaceous plants. There were modest differences in the stimulatory response between genera and between families which may reflect different experimental designs and conditions among studies. The responses varied significantly upon type of exposure system, with open-top chambers (OTCs) underestimating the maximum stimulatory response compared to free-air ozone-concentration enrichment (FACE) systems. These findings suggest that plants show a generalized hormetic stimulation by ozone which is constrained within certain limits of biological plasticity, being highly generalizable, evolutionarily based, and maintained over ecological scales. They further highlight that non-linear responses should be taken into account when assessing the ozone effects on plants.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Ozono/toxicidad , Plantas/efectos de los fármacos , Hormesis/efectos de los fármacos , Fenómenos Fisiológicos de las Plantas , Árboles
6.
Sci Total Environ ; 658: 1265-1277, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30677989

RESUMEN

Lithuania is representative of maritime to continental climate, no water limitation, and moderate ground-level ozone (O3) pollution. We investigated the trends of meteorological variables and O3 and how these environmental conditions associate with tree health from 2001 onward. Ozone metrics for forest protection, based on Accumulated O3 exposure Over a Threshold of X ppb (AOTX) or on Phytotoxic O3 Dose over a Y threshold (PODY), were modeled at nine ICP-Forests plots over the time period 2001-2014. Tree-response indicators, i.e. crown defoliation and visible foliar O3 injury, were assessed during annual field surveys carried out at each ICP-Forests plot over the time period 2007-2017. Mann-Kendall and Sen statistical tests were applied to estimate changes over time of meteorological variables, response indicators and O3 metrics. Finally, the O3 metrics were correlated (Spearman test) to the response indicators over the common period 2007-2014. Over this time period, trend analyses revealed an increasingly hotter (+0.27 °C decade-1, on average) and drier climate (rainfall, -48 mm decade-1). A reduction was found for O3 annual mean (-0.28 ppb decade-1, on average) and AOT40 (-2540 ppb·h decade-1, on average) whereas an increase was found for POD0 (+0.40 mmol m-2 decade-1, on average). Visible foliar O3 injury increased (+0.17% decade-1), while an improvement of the crown conditions (-5.0% decade-1) was observed. AOT40 was significantly associated with crown defoliation while PODY and soil water content were correlated with visible foliar O3 injury. As visible foliar O3 injury was negligible in all the studied species, the results suggest that moderate O3 pollution (approximately 30 ppb as annual average) does not induce biologically significant effects on this forest vegetation under the current conditions, however the overall O3 risk (POD0) is expected to increase in the future under a hotter and drier climate.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Monitoreo del Ambiente/métodos , Bosques , Ozono/efectos adversos , Árboles/fisiología , Contaminantes Atmosféricos/análisis , Lituania , Ozono/análisis , Árboles/efectos de los fármacos
7.
Environ Pollut ; 246: 566-570, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30594897

RESUMEN

The United States Environmental Protection Agency (US EPA) has recently proposed changes to strengthen the transparency of its pivotal regulatory science policy and procedures. In this context, the US EPA aims to enhance the transparency of dose-response data and models, proposing to consider for the first time non-linear biphasic dose-response models. While the proposed changes have the potential to lead to markedly improved ecological risk assessment compared to past and current approaches, we believe there remain open issues for improving the quality of ecological risk assessment, such as the consideration of adaptive, dynamic and interactive effects. Improved risk assessment including adaptive and dynamic non-linear models (beyond classic threshold models) can enhance the quality of regulatory decisions and the protection of ecological health. We suggest that other countries consider adopting a similar scientific-regulatory posture with respect to dose-response modeling via the inclusion of non-linear biphasic models, that incorporate the dynamic potential of biological systems to adapt (i.e., enhancing positive biological endpoints) or maladapt to low levels of stressor agents.


Asunto(s)
Ecología/métodos , Regulación Gubernamental , Medición de Riesgo/métodos , Relación Dosis-Respuesta a Droga , Ecología/legislación & jurisprudencia , Ecología/estadística & datos numéricos , Humanos , Dinámicas no Lineales , Medición de Riesgo/legislación & jurisprudencia , Medición de Riesgo/estadística & datos numéricos , Estados Unidos , United States Environmental Protection Agency
8.
Environ Pollut ; 243(Pt A): 163-176, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30172122

RESUMEN

Outdoor air pollution is considered as the most serious environmental problem for human health, associated with some million deaths worldwide per year. Cities have to cope with the challenges due to poor air quality impacting human health and citizen well-being. According to an analysis in the framework of this study, the annual mean concentrations of tropospheric ozone (O3) have been increasing by on average 0.16 ppb year-1 in cities across the globe over the time period 1995-2014. Green urban infrastructure can improve air quality by removing O3. To efficiently reduce O3 in cities, it is important to define suitable urban forest management, including proper species selection, with focus on the removal ability of O3 and other air pollutants, biogenic emission rates, allergenic effects and maintenance requirements. This study reanalyzes the literature to i) quantify O3 removal by urban vegetation categorized into trees/shrubs and green roofs; ii) rank 95 urban plant species based on the ability to maximize air quality and minimize disservices, and iii) provide novel insights on the management of urban green spaces to maximize urban air quality. Trees showed higher O3 removal capacity (3.4 g m-2 year-1 on average) than green roofs (2.9 g m-2 year-1 as average removal rate), with lower installation and maintenance costs (around 10 times). To overcome present gaps and uncertainties, a novel Species-specific Air Quality Index (S-AQI) of suitability to air quality improvement is proposed for tree/shrub species. We recommend city planners to select species with an S-AQI>8, i.e. with high O3 removal capacity, O3-tolerant, resistant to pests and diseases, tolerant to drought and non-allergenic (e.g. Acer sp., Carpinus sp., Larix decidua, Prunus sp.). Green roofs can be used to supplement urban trees in improving air quality in cities. Urban vegetation, as a cost-effective and nature-based approach, aids in meeting clean air standards and should be taken into account by policy-makers.


Asunto(s)
Contaminación del Aire/prevención & control , Ciudades , Ozono/análisis , Ozono/metabolismo , Árboles/química , Árboles/metabolismo , Contaminantes Atmosféricos/análisis , Biodegradación Ambiental , Humanos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...