Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 807(Pt 1): 150697, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34610396

RESUMEN

Photo-enhanced toxicity of crude oil is produced by exposure to ultraviolet (UV) radiation. Atlantic cod (Gadus morhua) embryos were exposed to crude oil with and without UV radiation (290-400 nm) from 3 days post fertilization (dpf) until 6 dpf. Embryos from the co-exposure experiment were continually exposed to UV radiation until hatching at 11 dpf. Differences in body burden levels and cyp1a expression in cod embryos were observed between the exposure regimes. High doses of crude oil produced increased mortality in cod co-exposed embryos, as well as craniofacial malformations and heart deformities in larvae from both experiments. A higher number of differentially expressed genes (DEGs) and pathways were revealed in the co-exposure experiment, indicating a photo-enhanced effect of crude oil toxicity. Our results provide mechanistic insights into crude oil and photo-enhanced crude oil toxicity, suggesting that UV radiation increases the toxicity of crude oil in early life stages of Atlantic cod.


Asunto(s)
Gadus morhua , Petróleo , Contaminantes Químicos del Agua , Animales , Larva , Petróleo/toxicidad , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
2.
Aquat Toxicol ; 226: 105558, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32673888

RESUMEN

The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of dioxins and dioxin-like compounds (DLCs) in vertebrates. Two clades of the Ahr family exist in teleosts (Ahr1 and Ahr2), and it has been demonstrated that Ahr2 is the main protein involved in mediating the toxicity of dioxins and DLCs in most teleost species. Recently, we characterized the Atlantic cod (Gadus morhua) Ahr1a and Ahr2a receptors. To further explore a possible subfunction partitioning of Ahr1a and Ahr2a in Atlantic cod we have mapped the expression and localization of ahr1a and ahr2a in early developmental stages. Atlantic cod embryos were continuously exposed in a passive-dosing exposure system to the Ahr agonist, benzo[a]pyrene (B[a]P), from five days post fertilization (dpf) until three days post hatching (dph). Expression of ahr1a, ahr2a, and the Ahr-target genes, cyp1a and ahrrb, was assessed in embryos (8 dpf and 10 dpf) and larvae (3 dph) with quantitative real-time PCR analyses (qPCR), while in situ hybridization was used to assess the localization of expression of ahr1a, ahr2a and cyp1a. Quantitative measurements showed an increased cyp1a expression in B[a]P-exposed samples at all sampling points, and for ahr2a at 10 dpf, confirming the activation of the Ahr-signalling pathway. Furthermore, B[a]P strongly induced ahr2a and cyp1a expression in the cardiovascular system and skin, respectively, of embryos and larvae. Induced expression of both ahr2a and cyp1a was also revealed in the liver of B[a]P-exposed larvae. Our results suggest that Ahr2a is the major subtype involved in mediating responses to B[a]P in early developmental stages of Atlantic cod, which involves transcriptional regulation of biotransformation genes, such as cyp1a. The focused expression of ahr1a in the eye of embryos and larvae, and the presence of ahr2a transcripts in the jaws and fin nodes, further indicate evolved specialized roles of the two Ahrs in ontogenesis.


Asunto(s)
Citocromo P-450 CYP1A1/metabolismo , Gadus morhua/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Benzo(a)pireno/toxicidad , Citocromo P-450 CYP1A1/genética , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Ojo/efectos de los fármacos , Ojo/embriología , Ojo/metabolismo , Gadus morhua/genética , Gadus morhua/metabolismo , Larva/efectos de los fármacos , Larva/genética , Hígado/efectos de los fármacos , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Receptores de Hidrocarburo de Aril/genética , Contaminantes Químicos del Agua/toxicidad
3.
Environ Sci Technol ; 54(2): 1033-1044, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31852180

RESUMEN

The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of halogenated and polycyclic aromatic hydrocarbons in vertebrates. Atlantic cod (Gadus morhua) has recently emerged as a model organism in environmental toxicology studies, and increased knowledge of Ahr-mediated responses to xenobiotics is imperative. Genome mining and phylogenetic analyses revealed two Ahr-encoding genes in the Atlantic cod genome, gmahr1a and gmahr2a. In vitro binding assays showed that both gmAhr proteins bind to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but stronger binding to gmAhr1a was observed. Transactivation studies with a reporter gene assay revealed that gmAhr1a is one order of magnitude more sensitive to TCDD than gmAhr2a, but the maximal responses of the receptors were similar. Other well-known Ahr agonists, such as ß-naphthoflavone (BNF), 3,3',4,4',5-pentachlorobiphenyl (PCB126), and 6-formylindolo[3,2-b]carbazole (FICZ), also activated the gmAhr proteins, but gmAhr1a was, in general, the more sensitive receptor and produced the highest efficacies. The induction of cyp1a in exposed precision-cut cod liver slices confirmed the activation of the Ahr signaling pathway ex vivo. In conclusion, the differences in transcriptional activation by gmAhr's with various agonists, the distinct binding properties with TCDD and BNF, and the distinct tissue-specific expression profiles indicate different functional specializations of the Atlantic cod Ahr's.


Asunto(s)
Gadus morhua , Dibenzodioxinas Policloradas , Hidrocarburos Policíclicos Aromáticos , Animales , Filogenia , Receptores de Hidrocarburo de Aril
4.
Aquat Toxicol ; 201: 174-186, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29929084

RESUMEN

Polycyclic aromatic hydrocarbons such as benzo[a]pyrene (BaP) that activate the aryl hydrocarbon receptor (Ahr) pathway, and endocrine disruptors acting through the estrogen receptor pathway are among environmental pollutants of major concern. In this work, we exposed Atlantic cod (Gadus morhua) precision-cut liver slices (PCLS) to BaP (10 nM and 1000 nM), ethynylestradiol (EE2) (10 nM and 1000 nM), and equimolar mixtures of BaP and EE2 (10 nM and 1000 nM) for 48 h, and performed RNA-Seq based transcriptome mapping followed by systematic bioinformatics analyses. Our gene expression analysis showed that several genes were differentially expressed in response to BaP and EE2 treatments in PCLS. Strong up-regulation of genes coding for the cytochrome P450 1a (Cyp1a) enzyme and the Ahr repressor (Ahrrb) was observed in BaP treated PCLS. EE2 treatment of liver slices strongly up-regulated genes coding for precursors of vitellogenin (Vtg) and eggshell zona pellucida (Zp) proteins. As expected, pathway enrichment and network analysis showed that the Ahr and estrogen receptor pathways are among the top affected by BaP and EE2 treatments, respectively. Interestingly, two genes coding for fibroblast growth factor 3 (Fgf3) and fibroblast growth factor 4 (Fgf4) were up-regulated by EE2 in this study. To our knowledge, the fgf3 and fgf4 genes have not previously been described in relation to estrogen signaling in fish liver, and these results suggest the modulation of the FGF signaling pathway by estrogens in fish. The signature expression profiles of top differentially expressed genes in response to the single compound (BaP or EE2) treatment were generally maintained in the expression responses to the equimolar binary mixtures. However, in the mixture-treated groups, BaP appeared to have anti-estrogenic effects as observed by lower number of differentially expressed putative EE2 responsive genes. Our in-depth quantitative analysis of changes in liver transcriptome in response to BaP and EE2, using PCLS tissue culture provides further mechanistic insights into effects of the compounds. Moreover, the analyses demonstrate the usefulness of PCLS in cod for omics experiments.


Asunto(s)
Benzo(a)pireno/toxicidad , Exposición a Riesgos Ambientales/análisis , Etinilestradiol/toxicidad , Gadus morhua/genética , Hígado/metabolismo , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética , Animales , Análisis por Conglomerados , Femenino , Gadus morhua/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Anotación de Secuencia Molecular , ARN/metabolismo , Supervivencia Tisular/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA