Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 880: 163370, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37028662

RESUMEN

Increasing surface ozone is a main concern for crop production in the Global Change framework, especially in the Mediterranean basin where climate conditions favor its photochemical formation. Meanwhile, increasing common crop diseases, such as yellow rust, one of the most important pathogens affecting global wheat production has been detected in the area in recent decades. However, the impact of O3 on the occurrence and impact of fungal diseases is scarcely understood. A close-to-field-conditions assay (Open Top Chamber facility) situated in a Mediterranean cereal rainfed farming area was carried out to study the impact of increasing O3 levels and N-fertilization on spontaneous fungal outbreaks in wheat. Four O3-fumigation levels reproducing pre-industrial to future pollutant atmospheres with additional 20 and 40 nL L-1 over the ambient levels were considered (7 h-mean ranging from 28 to 86 nL L-1). Two top N-fertilization supplementations (100 and 200 kg ha-1) were nested within the O3 treatments; foliar damage, pigment content and gas exchange parameters were measured. Pre-industrial natural background O3 levels strongly favored the yellow rust infection, where the O3-polluted levels currently observed at the farm highly benefited the crop, mitigating the presence of rust by 22 %. However, future expected high O3-levels neutralized the beneficial infection-controlling effect by inducing early wheat senescence, decreasing the chlorophyll index of the older leaves by up to 43 % under the higher O3 exposure. Nitrogen promoted the rust infection by up to 49.5 % without interacting with the O3-factor. Achieving future air quality standards might require considering new varietal improvement programs, to be able to adapt crops to an increased pathogen tolerance without requiring the assistance provided by O3-pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Basidiomycota , Ozono , Ozono/análisis , Triticum , Procesos Fotoquímicos , Hojas de la Planta/química , Contaminantes Atmosféricos/análisis
2.
Chemosphere ; 282: 131045, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34118633

RESUMEN

Stormwater runoff from urban and suburban areas can carry hazardous pollutants directly into aquatic ecosystems. These pollutants, such as metals, nutrients, aromatic hydrocarbons, pesticides, and pharmaceuticals, are very toxic to aquatic organisms. Recently, significant amounts of zinc oxide engineered nanoparticles (ZnO-NPs) have been detected in urban stormwater and its bioretention systems. This raises concerns about a potential increase of stormwater toxicity and reduced performance of the treatment infrastructures. To tackle these issues, we developed a simple, low-cost bioretention system to remediate stormwater and retain ZnO-NPs. This system retained up to 73% Zn, 66% Cu, and >99% Pb. However, the removal efficiency for Pb was lower after adding ZnO-NPs to the system, possibly due to the remobilization of Pb phosphates. The effect of ZnO-NPs on stormwater toxicity and metal accumulation in wetland plants was also evaluated.


Asunto(s)
Metales Pesados , Nanopartículas , Contaminantes Químicos del Agua , Óxido de Zinc , Ecosistema , Plomo , Lluvia , Solubilidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Zinc , Óxido de Zinc/toxicidad
3.
Plant Methods ; 11: 35, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26106438

RESUMEN

BACKGROUND: Recent developments in unmanned aerial platforms (UAP) have provided research opportunities in assessing land allocation and crop physiological traits, including response to abiotic and biotic stresses. UAP-based remote sensing can be used to rapidly and cost-effectively phenotype large numbers of plots and field trials in a dynamic way using time series. This is anticipated to have tremendous implications for progress in crop genetic improvement. RESULTS: We present the use of a UAP equipped with sensors for multispectral imaging in spatial field variability assessment and phenotyping for low-nitrogen (low-N) stress tolerance in maize. Multispectral aerial images were used to (1) characterize experimental fields for spatial soil-nitrogen variability and (2) derive indices for crop performance under low-N stress. Overall, results showed that the aerial platform enables to effectively characterize spatial field variation and assess crop performance under low-N stress. The Normalized Difference Vegetation Index (NDVI) data derived from spectral imaging presented a strong correlation with ground-measured NDVI, crop senescence index and grain yield. CONCLUSION: This work suggests that the aerial sensing platform designed for phenotyping studies has the potential to effectively assist in crop genetic improvement against abiotic stresses like low-N provided that sensors have enough resolution for plot level data collection. Limitations and future potential uses are also discussed.

4.
Plant Biol (Stuttg) ; 15(1): 135-43, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22672709

RESUMEN

Further knowledge of the processes conditioning nitrogen use efficiency (NUE) is of great relevance to crop productivity. The aim of this paper was characterise C and N partitioning during grain filling and their implications for NUE. Cereals such as bread wheat (Triticum aestivum L. cv Califa sur), triticale (× Triticosecale Wittmack cv. Imperioso) and tritordeum (× Tritordeum Asch. & Graebn line HT 621) were grown under low (LN, 5 mm NH(4) NO(3)) and high (HN, 15 mm NH(4)NO(3)) N conditions. We conducted simultaneous double labelling ((12)CO(2) and (15)NH(4) (15)NO(3)) in order to characterise C and N partitioning during grain filling. Although triticale plants showed the largest total and ear dry matter values in HN conditions, the large investment in shoot and root biomass negatively affected ear NUE. Tritordeum was the only genotype that increased NUE in both N treatments (NUE(total)), whereas in wheat, no significant effect was detected. N labelling revealed that N fertilisation during post-anthesis was more relevant for wheat and tritordeum grain filling than for triticale. The study also revealed that the investments of C and N in flag leaves and shoots, together with the 'waste' of photoassimilates in respiration, conditioned the NUE of plants, and especially under LN. These results suggest that C and N use by these plants needs to be improved in order to increase ear C and N sinks, especially under LN. It is also remarkable that even though tritordeum shows the largest increase in NUE, the low yield of this cereal limits its agronomic value.


Asunto(s)
Carbono/metabolismo , Grano Comestible/fisiología , Nitrógeno/metabolismo , Poaceae/fisiología , Triticum/fisiología , Biomasa , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análisis , Respiración de la Célula , Grano Comestible/crecimiento & desarrollo , Fertilizantes , Isótopos de Nitrógeno/análisis , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Poaceae/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Agua
5.
J Exp Bot ; 58(2): 131-45, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17050642

RESUMEN

Wheat is one of the founder crops of Western agriculture. This study reconstructs agronomic conditions, potential yields, and kernel weight in the beginnings of cultivation of domesticated free-threshing wheat, c. 8000 BC. The carbon and nitrogen stable isotope compositions and the dimensions of fossil grains of naked wheat (Triticum aestivum/durum) were analysed. Samples were collected in Tell Halula and Akarçay Tepe, two Neolithic archaeological sites from the Middle Euphrates (the claimed core area for wheat domestication). The samples analysed include the oldest reported remains of naked wheat. Consistently wetter conditions but lower kernel weights were found in the Neolithic compared with the present day. Besides, the estimated yields were clearly beyond what is expected from the gathering of wild stands of cereals. Patterns of phenotypic adaptation achieved by wheat after its diffusion through the Mediterranean were also assessed. On the one hand, the study looked at variation in morphophysiological traits as related to local climate in a set of 68 durum wheat landraces from the Middle Euphrates. On the other hand, an assessment was made of regional adaptation around the Mediterranean Basin in a set of 90 landraces, traditional varieties, and modern cultivars from different origins by characterizing agronomic and morphophysiological variability. Significant relationships were observed between phenotypic variation among landraces from the Middle Euphrates and both minimum temperatures and the ratio of precipitation to potential evapotranspiration of the sites of origin. In addition, consistent differences in grain yield, plant structure, and water status were found among genotypes following both north-south and east-west gradients across the Mediterranean. These differences are associated with contrasting environmental and selection pressures.


Asunto(s)
Agricultura/historia , Agricultura/métodos , Clima , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Adaptación Fisiológica , Arqueología , Fósiles , Historia Antigua , Semillas , Siria , Factores de Tiempo , Turquía , Agua , Talasemia beta
6.
Ann Bot ; 89 Spec No: 925-40, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12102518

RESUMEN

Drought is the main abiotic constraint on cereal yield. Analysing physiological determinants of yield responses to water may help in breeding for higher yield and stability under drought conditions. The traits to select (either for stress escape, avoidance or tolerance) and the framework where breeding for drought stress is addressed will depend on the level and timing of stress in the targeted area. If the stress is severe, breeding under stress-free conditions may be unsuccessful and traits that confer survival may become a priority. However, selecting for yield itself under stress-alleviated conditions appears to produce superior cultivars, not only for optimum environments, but also for those characterized by frequent mild and moderate stress conditions. This implies that broad avoidance/tolerance to mild-moderate stresses is given by constitutive traits also expressed under stress-free conditions. In this paper, we focus on physiological traits that contribute to improved productivity under mild-moderate drought. Increased crop performance may be achieved through improvements in water use, water-use efficiency and harvest index. The first factor is relevant when soil water remains available at maturity or when deep-rooted genotypes access water in the soil profile that is not normally available; the two latter conditions become more important when all available water is exhausted by the end of the crop cycle. Independent of the mechanism operating, a canopy able to use more water than another would have more open stomata and therefore higher canopy temperature depression, and 13C discrimination (delta13C) in plant matter. The same traits would also seem to be relevant when breeding for hot, irrigated environments. Where additional water is not available to the crop, higher water-use efficiency (WUE) appears to be an alternative strategy to improve crop performance. In this context delta13C constitutes a simple but reliable measure of WUE. However, in contrast to lines performing better because of increased access to water, lines producing greater biomass due to superior WUE will have lower delta13C values. WUE may be modified not only through a decrease in stomatal conductance, but also through an increase in photosynthetic capacity. Harvest index is strongly reduced by terminal drought (i.e. drought during grain filling). Thus, phenological traits increasing the relative amount of water used during grain filling, or adjusting the crop cycle to the seasonal pattern of rainfall may be useful. Augmenting the contribution of carbohydrate reserves accumulated during vegetative growth to grain filling may also be worthwhile in harsh environmcnts. Alternatively, extending the duration of stem elongation without changing the timing of anthesis would increase the number of grains per spike and the harvest index without changing the amount of water utilized by the crop.


Asunto(s)
Cruzamiento/estadística & datos numéricos , Grano Comestible/genética , Agua/fisiología , Aclimatación/genética , Aclimatación/fisiología , Argentina , Australia , Isótopos de Carbono , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Desastres , Grano Comestible/clasificación , Grano Comestible/crecimiento & desarrollo , Hordeum/genética , Hordeum/crecimiento & desarrollo , Luz , México , Carácter Cuantitativo Heredable , Radiometría , Reproducción , Estaciones del Año , Semillas/genética , Semillas/crecimiento & desarrollo , Temperatura , Triticum/genética , Triticum/crecimiento & desarrollo
7.
Plant Physiol ; 100(2): 1033-5, 1992 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16653012

RESUMEN

Four triticale (xTriticosecale Wittmack) genotypes were grown under rainfed conditions with limited irrigation support in Lleida in northeast Spain. For each variety, samples consisting of 10 tillers with half-sterilized spikes were taken three times from anthesis to maturity. Carbon isotope ratios (delta(13)C) were then determined in water extracts from ear bracts (glumes, paleas, and lemmas), awns and flag leaves, and in powdered kernels. For the half-sterilized spikes, carbon isotope analysis was carried out separately in bracts and awns from fertile and nonfertile spikelets. The delta(13)C in the water-soluble fraction of awns, glumes, and glumells from fruitless spikelets was significantly higher than that from fertile spikelets sampled at mid-grain filling. Differences in delta(13)C among sterile and fertile spikelets were not significant in samples taken a few days after anthesis or at maturity. These results are in accordance with some degree of refixation by awns and ear bracts of the CO(2) respired by grains during grain filling. There was progressively higher delta(13)C from flag leaf blades to awns, glumes, and glumells. This variation in delta(13)C along plant parts may be caused by differences in the ratio of assimilation rate to CO(2)-diffusive conductance. Values of delta(13)C of mature kernels were between the values at anthesis and mid-grain filling for the water-soluble fraction of flag leaves and inner bracts and were fairly similar to those of glumes and awns.

8.
Planta ; 183(4): 497-504, 1991 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24193842

RESUMEN

Photosynthetic rates and related anatomical characteristics of leaves developed at three levels of irradiance (1200, 300 and 80 umol · m(-2) · s(-1)) were determined in the C4-like species Flaveria brownii A.M. Powell, the C3-C4-intermediate species F. linearis Lag., and the F1 hybrid between them (F. brownii × F. linearis). In the C3-C4 and F1 plants, increases in photosynthetic capacity per unit leaf area were strongly correlated with changes in mesophyll area per unit leaf area. The C4-like plant F. brownii, however, showed a much lower correlation between photosynthetic capacity and mesophyll area per unit leaf area. Plants of F. brownii developed at high irradiance showed photosynthetic rates per unit of mesophyll cell area 50% higher than those plants developed at medium irradiance. These results along with an increase in water-use efficiency are consistent with an increase of C4 photosynthesis in high-irradiance-grown F. brownii plants, whereas in the other two genotypes such plasticity seems to be absent. Photosynthetic discrimination against (13)C in the three genotypes was less at high than at low irradiance, with the greatest change occurring in F. brownii. Discrimination against (13)C expressed as δ (13)C was linearly correlated (r (2) = 0.81; P<0.001) with the ratio of bundle-sheath volume to mesophyll cell area when all samples from the three genotypes were combined. This tissue ratio increased for F. brownii and the F1 hybrid as growth irradiance increased, indicating a greater tendency towards Kranz anatomy. The results indicated that F. brownii had plasticity in its C4-related anatomical and physiological characteristics as a function of growth irradiance, whereas plasticity was less evident in the F1 hybrid and absent in F. linearis.

9.
Photosynth Res ; 26(1): 49-57, 1990 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24420409

RESUMEN

Several leaf anatomical and ultrastructural characteristics usually related with photosynthetic capacity were examined in two Flaveria species with strong differences in anatomy and their F1 hybrid. Flaveria trinervia (Spreng.) Mohr (C4) was the female parent and F. brownii A.M. Powell (C4-like) was the male parent. Quantitative anatomical analysis was made on transverse sections of leaves at both the light and electron microscope level. Four kinds of photosynthetic tissues were considered: bundle sheath (BS), mesophyll adjacent to the BS, mesophyll not adjacent to the BS, and larger spongy mesophyll cells. Flaveria trinvervia partitioned a larger proportion of its photosynthetic cells to BS and the mesophyll layer adjacent to BS and also possessed larger chloroplasts, especially in BS, than did F. brownii. These results suggest that although F. brownii is very C4-like, its anatomy is not as completely C4 as is the case for F. trinervia. In the F1 hybrid the relative contribution of the different tissues to the total photosynthetic tissue volume and area per unit leaf area was quite similar to that of F. trinervia. On the other hand, the chloroplast density and size of the F1 hybrid were fairly similar to those of F. brownii, especially in BS. Thus, there was no evidence of maternal inheritance in the chloroplast characteristics studied. A negative correlation (P<0.05) between chloroplast size and density was observed among species and relicates within each kind of tissue. This correlation was highest (r=-0.94, P<0.001) for the BS and when values were plotted on a logarithmic scale. Thus, higher chloroplast numbers for F. brownii and the F1 hybrid were offset by larger chloroplasts in F. trinervia. Less complete C4 photosynthesis in F. brownii may be partially due to incomplete development of Kranz anatomy usually associated with C4 photosynthesis.

10.
Plant Physiol ; 85(3): 667-73, 1987 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16665757

RESUMEN

The rate of net CO(2) assimilation (A), the stomatal (g(s)) and residual (g(r)) conductances to CO(2), the intercellular CO(2) concentration, the CO(2) compensation points at 21% O(2) (Gamma(21)) and at 2% O(2) (Gamma(2)), and the amounts of dry matter, nitrogen, and carbohydrates were determined, from anthesis through grain filling, in the flag leaf blade and sheath of spring wheat (Triticum aestivum L. cv Kolibri). The nitrogen content and the rate of net CO(2) assimilation declined slowly until the onset of senescence in both organs, about 3 weeks after anthesis. During senescence the reduction of A in both organs was not primarily caused by a decrease in g(s); the main factor is the decrease in g(r). From values of Gamma(21) and Gamma(2) it is suggested that the rate of respiration in the light contributing to the CO(2) compensation point is higher in sheaths than in blades irrespective of the O(2) level considered. The role of sheaths storing and later transporting assimilates to the developing grains seems to be more important for shoot yield than that of sheaths functioning as photosynthetic organs after the onset of senescence occurs. It is suggested that accumulation of carbohydrates in leaves might somehow trigger senescence in the flag leaf blade and sheath simultaneously.

11.
Photosynth Res ; 8(3): 209-18, 1986 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24443259

RESUMEN

The relationships between photosynthetic capacity and dry matter accumulation during the grain filling period have been studied in flag leaves of Triticum aestivum L., cv. Kolibri grown in Mediterranean field conditions. Particular importance has been given to assimilate accumulation in relation to the onset of senescence. During grain filling, the time course of specific dry weight (SDW) was similar in the blade and in the sheath. Variations in SDW were about six times larger in the sheath than in the blade. Minimum blade SDW values occurred during heading and at anthesis. Maximum blade SDW values were observed two weeks after anthesis. After this, SDW values decreased sharply. The dry matter increase per grain in the period from two weeks after anthesis to the end, was only about 25% of final grain dry weight. The importance of environmental constraints on maximum SDW values are discussed. Maximum SDW values occurred at the beginning of the period of rapid decline in blade net CO2 assimilation rate and leaf nitrogen content, that is, at the beginning of senescence. On the other hand, the stomatal resistance to CO2 and the development of senescence are not apparently related. The maximum blade dry weight increase (considering a value of zero at heading) was about 60 mg dry weight per g fresh weight. The possible relationships between dry matter accumulation and senescence onset are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA