Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 931: 172838, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38685425

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder and leading cause of death worldwide, whose pathogenesis has been linked to toxic environmental exposures. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (i) to compile, and group by exposure setting (non-specified general; residential; occupational), environmental factors reported to modulate the risk of developing PD and (ii) to map and geospatially analyze global regions of both research activity and paucity. Among the broader environmental settings, occupational exposures had the highest average odds ratio value at 3.82, followed by general (non-specified or mixed) exposures at 3.07, and residential exposures at 2.36. Occupational exposure to industrial toxins was the highest ranked subset of exposures with an odds ratio of 10.74. Among the studies meeting the inclusion criteria, 75 % were conducted in Europe or the Western United States. The number of individuals partaking per study ranged from a high of 55,585 (Taiwan) to a low of 233 (Faroe Islands), with a mean of n = 14,462. The top three environmental factors associated with high odds ratios for increased risk of developing PD were (i) exposure to dyes (25.33), (ii) methylene chloride (16.5) and specifically in adult men (iii) consumption of fatty whale meat (10.57), which is known to harbor a broad spectrum of so called persistent, bioaccumulative, toxic (PBT) pollutants. Geospatially, the highest odds ratio values were identified in European countries, whereas notable data gaps were revealed for South America, Australia, Africa, and the majority of Asia with the exception of Taiwan. Whereas occupational exposures to industrial chemicals, such as harmful dyes and methylene chloride, ranked highest in risk values, available data suggest notable opportunities for reducing PD cases globally by limiting harmful environmental exposures to a spectrum of toxic chemicals, particularly via the food intake route. Thus, current efforts in improving environmental quality globally by limiting toxic emission may deliver the added benefit of helping to reign in PD. Agents of concern in this respect include pesticides (e.g., paraquat, demeton, monocrotophos), particulate matter associated with air pollution, and a spectrum of organic and inorganic neurotoxins including heavy metals.


Asunto(s)
Exposición a Riesgos Ambientales , Enfermedad de Parkinson , Enfermedad de Parkinson/epidemiología , Humanos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminantes Ambientales/análisis , Factores de Riesgo , Exposición Profesional/estadística & datos numéricos
2.
Sci Total Environ ; 928: 172260, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38583622

RESUMEN

Novel means are needed to identify individuals and subpopulations susceptible to and afflicted by neurodegenerative diseases (NDDs). This study aimed to utilize geographic distribution of heavy metal sources and sinks to investigate a potential human health risk of developing NDDs. Known or hypothesized environmental factors driving disease prevalence of Alzheimer's Disease (AD), Parkinson's Disease (PD), and amyotrophic lateral sclerosis (ALS) are heavy metals, including arsenic (As), cadmium (Cd), manganese (Mn) and mercury (Hg). Lead (Pb) has been associated with AD and ALS. Analyzable mediums of human exposure to heavy metals (i.e., toxic metals and metalloids), or proxies thereof, include infant blood, topsoil, sewage sludge, and well water. U.S. concentrations of heavy metals in topsoil, sewage sludge, well water, and infant blood were mapped and compared to prevalence rates of major NDDs. Data from federal and state agencies (i.e., CDC, EPA, and the US Geological Survey) on heavy metal concentrations, age distribution, and NDD prevalence rates were geographically represented and statistically analyzed to quantify possible correlations. Aside from an expected significant association between NDD prevalence and age (p < 0.0001), we found significant associations between the prevalence of the sum of three major NDDs with: Pb in topsoil (p = 0.0433); Cd (p < 0.0001) and Pb (p < 0.0001) in sewage sludge; Pb in infant blood (p < 0.0001). Concentrations in sewage sludge of Cd and Pb were significantly correlated with NDD prevalence rates with an odds ratio of 2.91 (2.04, 4.225 95%CI) and 4.084 (3.14, 5.312 95%CI), respectively. The presence of toxic metals in the U.S. environment in multiple matrices, including sewage sludge, was found to be significantly associated with NDD prevalence. This is the first use of sewage sludge as an environmental proxy matrix to infer risk of developing NDDs.


Asunto(s)
Exposición a Riesgos Ambientales , Metales Pesados , Enfermedades Neurodegenerativas , Metales Pesados/análisis , Humanos , Estados Unidos/epidemiología , Exposición a Riesgos Ambientales/estadística & datos numéricos , Prevalencia , Enfermedades Neurodegenerativas/epidemiología , Enfermedades Neurodegenerativas/inducido químicamente , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...