Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Circ Arrhythm Electrophysiol ; 17(3): e012278, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38344845

RESUMEN

BACKGROUND: Electroporation is a promising nonthermal ablation method for cardiac arrhythmia treatment. Although initial clinical studies found electroporation pulsed-field ablation (PFA) both safe and efficacious, there are significant knowledge gaps concerning the mechanistic nature and electrophysiological consequences of cardiomyocyte electroporation, contributed by the paucity of suitable human in vitro models. Here, we aimed to establish and characterize a functional in vitro model based on human-induced pluripotent stem cells (hiPSCs)-derived cardiac tissue, and to study the fundamentals of cardiac PFA. METHODS: hiPSC-derived cardiomyocytes were seeded as circular cell sheets and subjected to different PFA protocols. Detailed optical mapping, cellular, and molecular characterizations were performed to study PFA mechanisms and electrophysiological outcomes. RESULTS: PFA generated electrically silenced lesions within the hiPSC-derived cardiac circular cell sheets, resulting in areas of conduction block. Both reversible and irreversible electroporation components were identified. Significant electroporation reversibility was documented within 5 to 15-minutes post-PFA. Irreversibly electroporated regions persisted at 24-hours post-PFA. Per single pulse, high-frequency PFA was less efficacious than standard (monophasic) PFA, whereas increasing pulse-number augmented lesion size and diminished reversible electroporation. PFA augmentation could also be achieved by increasing extracellular Ca2+ levels. Flow-cytometry experiments revealed that regulated cell death played an important role following PFA. Assessing for PFA antiarrhythmic properties, sustainable lines of conduction block could be generated using PFA, which could either terminate or isolate arrhythmic activity in the hiPSC-derived cardiac circular cell sheets. CONCLUSIONS: Cardiac electroporation may be studied using hiPSC-derived cardiac tissue, providing novel insights into PFA temporal and electrophysiological characteristics, facilitating electroporation protocol optimization, screening for potential PFA-sensitizers, and investigating the mechanistic nature of PFA antiarrhythmic properties.


Asunto(s)
Ablación por Catéter , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/cirugía , Antiarrítmicos/uso terapéutico , Miocitos Cardíacos/metabolismo , Electroporación , Ablación por Catéter/métodos
3.
Physiol Rep ; 10(8): e15265, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35439358

RESUMEN

Heterozygous missense variants of the cardiac ryanodine receptor gene (RYR2) cause catecholaminergic polymorphic ventricular tachycardia (CPVT). These missense variants of RYR2 result in a gain of function of the ryanodine receptors, characterized by increased sensitivity to activation by calcium that results in an increased propensity to develop calcium waves and delayed afterdepolarizations. We have recently detected a nonsense variant in RYR2 in a young patient who suffered an unexplained cardiac arrest. To understand the mechanism by which this variant in RYR2, p.(Arg4790Ter), leads to ventricular arrhythmias, human induced pluripotent stem cells (hiPSCs) harboring the novel nonsense variant in RYR2 were generated and differentiated into cardiomyocytes (RYR2-hiPSC-CMs) and molecular and calcium handling properties were studied. RYR2-hiPSC-CMs displayed significant calcium handling abnormalities at baseline and following treatment with isoproterenol. Treatment with carvedilol and nebivolol resulted in a significant reduction in calcium handling abnormalities in the RYR2-hiPSC-CMs. Expression of the mutant RYR2 allele was confirmed at the mRNA level and partial silencing of the mutant allele resulted in a reduction in calcium handling abnormalities at baseline. The nonsense variant behaves similarly to other gain of function variants in RYR2. Carvedilol and nebivolol may be suitable treatments for patients with gain of function RYR2 variants.


Asunto(s)
Células Madre Pluripotentes Inducidas , Canal Liberador de Calcio Receptor de Rianodina , Calcio/metabolismo , Señalización del Calcio , Carvedilol , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Miocitos Cardíacos/metabolismo , Nebivolol/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
4.
J Am Heart Assoc ; 11(4): e021615, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35112880

RESUMEN

Background Optogenetics, using light-sensitive proteins, emerged as a unique experimental paradigm to modulate cardiac excitability. We aimed to develop high-resolution optogenetic approaches to modulate electrical activity in 2- and 3-dimensional cardiac tissue models derived from human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. Methods and Results To establish light-controllable cardiac tissue models, opsin-carrying HEK293 cells, expressing the light-sensitive cationic-channel CoChR, were mixed with hiPSC-cardiomyocytes to generate 2-dimensional hiPSC-derived cardiac cell-sheets or 3-dimensional engineered heart tissues. Complex illumination patterns were designed with a high-resolution digital micro-mirror device. Optical mapping and force measurements were used to evaluate the tissues' electromechanical properties. The ability to optogenetically pace and shape the tissue's conduction properties was demonstrated by using single or multiple illumination stimulation sites, complex illumination patterns, or diffuse illumination. This allowed to establish in vitro models for optogenetic-based cardiac resynchronization therapy, where the electrical activation could be synchronized (hiPSC-derived cardiac cell-sheets and engineered heart tissue models) and contractile properties improved (engineered heart tissues). Next, reentrant activity (rotors) was induced in the hiPSC-derived cardiac cell-sheets and engineered heart tissue models through optogenetics programmed- or cross-field stimulations. Diffuse illumination protocols were then used to terminate arrhythmias, demonstrating the potential to study optogenetics cardioversion mechanisms and to identify optimal illumination parameters for arrhythmia termination. Conclusions By combining optogenetics and hiPSC technologies, light-controllable human cardiac tissue models could be established, in which tissue excitability can be modulated in a functional, reversible, and localized manner. This approach may bring a unique value for physiological/pathophysiological studies, for disease modeling, and for developing optogenetic-based cardiac pacing, resynchronization, and defibrillation approaches.


Asunto(s)
Células Madre Pluripotentes Inducidas , Potenciales de Acción/fisiología , Arritmias Cardíacas , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Optogenética/métodos
5.
JCI Insight ; 6(11)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34100384

RESUMEN

Abnormal action potential (AP) properties, as occurs in long or short QT syndromes (LQTS and SQTS, respectively), can cause life-threatening arrhythmias. Optogenetics strategies, utilizing light-sensitive proteins, have emerged as experimental platforms for cardiac pacing, resynchronization, and defibrillation. We tested the hypothesis that similar optogenetic tools can modulate the cardiomyocyte's AP properties, as a potentially novel antiarrhythmic strategy. Healthy control and LQTS/SQTS patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were transduced to express the light-sensitive cationic channel channelrhodopsin-2 (ChR2) or the anionic-selective opsin, ACR2. Detailed patch-clamp, confocal-microscopy, and optical mapping studies evaluated the ability of spatiotemporally defined optogenetic protocols to modulate AP properties and prevent arrhythmogenesis in the hiPSC-CMs cell/tissue models. Depending on illumination timing, light-induced ChR2 activation induced robust prolongation or mild shortening of AP duration (APD), while ACR2 activation allowed effective APD shortening. Fine-tuning these approaches allowed for the normalization of pathological AP properties and suppression of arrhythmogenicity in the LQTS/SQTS hiPSC-CM cellular models. We next established a SQTS-hiPSC-CMs-based tissue model of reentrant-arrhythmias using optogenetic cross-field stimulation. An APD-modulating optogenetic protocol was then designed to dynamically prolong APD of the propagating wavefront, completely preventing arrhythmogenesis in this model. This work highlights the potential of optogenetics in studying repolarization abnormalities and in developing novel antiarrhythmic therapies.


Asunto(s)
Potenciales de Acción/fisiología , Arritmias Cardíacas/fisiopatología , Síndrome de QT Prolongado/fisiopatología , Miocitos Cardíacos/fisiología , Channelrhodopsins/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Microscopía Confocal , Miocitos Cardíacos/metabolismo , Opsinas/genética , Imagen Óptica , Optogenética , Técnicas de Placa-Clamp
6.
Methods Mol Biol ; 2273: 111-129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33604848

RESUMEN

Tissue engineering provides unique opportunities for disease modeling, drug testing, and regenerative medicine applications. The use of cell-seeded scaffolds to promote tissue development is the hallmark of the tissue engineering. Among the different types of scaffolds (derived from either natural or synthetic polymers) used in the field, the use of decellularized tissues/organs is specifically attractive. The decellularization process involves the removal of native cells from the original tissue, allowing for the preservation of the three-dimensional (3D) macroscopic and microscopic structures of the tissue and extracellular matrix (ECM) composition. Following recellularization, the resulting scaffold provides the seeded cells with the appropriate biological signals and mechanical properties of the original tissue. Here, we describe different methods to create viable scaffolds from decellularized heart and liver as useful tools to study and exploit ECM biological key factors for the generation of engineered tissues with enhanced regenerative properties.


Asunto(s)
Dermis Acelular/metabolismo , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Animales , Matriz Extracelular/química , Corazón/crecimiento & desarrollo , Hepatocitos/citología , Hígado/crecimiento & desarrollo , Miocitos Cardíacos/citología , Conejos
7.
J Am Coll Cardiol ; 73(18): 2310-2324, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31072576

RESUMEN

BACKGROUND: The short QT syndrome (SQTS) is an inherited arrhythmogenic syndrome characterized by abnormal ion channel function, life-threatening arrhythmias, and sudden cardiac death. OBJECTIVES: The purpose of this study was to establish a patient-specific human-induced pluripotent stem cell (hiPSC) model of the SQTS, and to provide mechanistic insights into its pathophysiology and therapy. METHODS: Patient-specific hiPSCs were generated from a symptomatic SQTS patient carrying the N588K mutation in the KCNH2 gene, differentiated into cardiomyocytes, and compared with healthy and isogenic (established by CRISPR/Cas9-based mutation correction) control hiPSC-derived cardiomyocytes (hiPSC-CMs). Patch-clamp was used to evaluate action-potential (AP) and IKr current properties at the cellular level. Conduction and arrhythmogenesis were studied at the tissue level using confluent 2-dimensional hiPSC-derived cardiac cell sheets (hiPSC-CCSs) and optical mapping. RESULTS: Intracellular recordings demonstrated shortened action-potential duration (APD) and abbreviated refractory period in the SQTS-hiPSC-CMs. Similarly, voltage- and AP-clamp recordings revealed increased IKr current density due to attenuated inactivation, primarily in the AP plateau phase. Optical mapping of the SQTS-hiPSC-CCSs revealed shortened APD, impaired APD-rate adaptation, abbreviated wavelength of excitation, and increased inducibility of sustained spiral waves. Phase-mapping analysis revealed accelerated and stabilized rotors manifested by increased rotor rotation frequency, increased rotor curvature, decreased core meandering, and increased rotor complexity. Application of quinidine and disopyramide, but not sotalol, normalized APD and suppressed arrhythmia induction. CONCLUSIONS: A novel hiPSC-based model of the SQTS was established at both the cellular and tissue levels. This model recapitulated the disease phenotype in the culture dish and provided important mechanistic insights into arrhythmia mechanisms in the SQTS and its treatment.


Asunto(s)
Arritmias Cardíacas , Miocitos Cardíacos/metabolismo , Potenciales de Acción , Antiarrítmicos/farmacología , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/prevención & control , Células Cultivadas , Canal de Potasio ERG1/genética , Humanos , Células Madre Pluripotentes Inducidas , Mutación , Técnicas de Placa-Clamp , Modelación Específica para el Paciente
8.
Acta Biomater ; 92: 145-159, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31075518

RESUMEN

Cardiac tissue engineering provides unique opportunities for cardiovascular disease modeling, drug testing, and regenerative medicine applications. To recapitulate human heart tissue, we combined human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with a chitosan-enhanced extracellular-matrix (ECM) hydrogel, derived from decellularized pig hearts. Ultrastructural characterization of the ECM-derived engineered heart tissues (ECM-EHTs) revealed an anisotropic muscle structure, with embedded cardiomyocytes showing more mature properties than 2D-cultured hiPSC-CMs. Force measurements confirmed typical force-length relationships, sensitivity to extracellular calcium, and adequate ionotropic responses to contractility modulators. By combining genetically-encoded calcium and voltage indicators with laser-confocal microscopy and optical mapping, the electrophysiological and calcium-handling properties of the ECM-EHTs could be studied at the cellular and tissue resolutions. This allowed to detect drug-induced changes in contraction rate (isoproterenol, carbamylcholine), optical signal morphology (E-4031, ATX2, isoproterenol, ouabin and quinidine), cellular arrhythmogenicity (E-4031 and ouabin) and alterations in tissue conduction properties (lidocaine, carbenoxolone and quinidine). Similar assays in ECM-EHTs derived from patient-specific hiPSC-CMs recapitulated the abnormal phenotype of the long QT syndrome and catecholaminergic polymorphic ventricular tachycardia. Finally, programmed electrical stimulation and drug-induced pro-arrhythmia led to the development of reentrant arrhythmias in the ECM-EHTs. In conclusion, a novel ECM-EHT model was established, which can be subjected to high-resolution long-term serial functional phenotyping, with important implications for cardiac disease modeling, drug testing and precision medicine. STATEMENT OF SIGNIFICANCE: One of the main objectives of cardiac tissue engineering is to create an in-vitro muscle tissue surrogate of human heart tissue. To this end, we combined a chitosan-enforced cardiac-specific ECM hydrogel derived from decellularized pig hearts with human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from healthy-controls and patients with inherited cardiac disorders. We then utilized genetically-encoded calcium and voltage fluorescent indicators coupled with unique optical imaging techniques and force-measurements to study the functional properties of the generated engineered heart tissues (EHTs). These studies demonstrate the unique potential of the new model for physiological and pathophysiological studies (assessing contractility, conduction and reentrant arrhythmias), novel disease modeling strategies ("disease-in-a-dish" approach) for studying inherited arrhythmogenic disorders, and for drug testing applications (safety pharmacology).


Asunto(s)
Arritmias Cardíacas/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Matriz Extracelular/metabolismo , Corazón/fisiología , Células Madre Pluripotentes Inducidas/citología , Modelos Cardiovasculares , Miocitos Cardíacos/citología , Ingeniería de Tejidos/métodos , Potenciales de Acción/efectos de los fármacos , Animales , Arritmias Cardíacas/patología , Calcio/metabolismo , Fármacos Cardiovasculares/farmacología , Modelos Animales de Enfermedad , Matriz Extracelular/efectos de los fármacos , Humanos , Hidrogeles/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Especificidad de Órganos , Porcinos
9.
Stem Cell Reports ; 10(6): 1879-1894, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29754959

RESUMEN

Fulfilling the potential of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes for studying conduction and arrhythmogenesis requires development of multicellular models and methods for long-term repeated tissue phenotyping. We generated confluent hiPSC-derived cardiac cell sheets (hiPSC-CCSs), expressing the genetically encoded voltage indicator ArcLight. ArcLight-based optical mapping allowed generation of activation and action-potential duration (APD) maps, which were validated by mapping the same hiPSC-CCSs with the voltage-sensitive dye, Di-4-ANBDQBS. ArcLight mapping allowed long-term assessment of electrical remodeling in the hiPSC-CCSs and evaluation of drug-induced conduction slowing (carbenoxolone, lidocaine, and quinidine) and APD prolongation (quinidine and dofetilide). The latter studies also enabled step-by-step depiction of drug-induced arrhythmogenesis ("torsades de pointes in the culture dish") and its prevention by MgSO4 and rapid pacing. Phase-mapping analysis allowed biophysical characterization of spiral waves induced in the hiPSC-CCSs and their termination by electrical cardioversion and overdrive pacing. In conclusion, ArcLight mapping of hiPSC-CCSs provides a powerful tool for drug testing and arrhythmia investigation.


Asunto(s)
Biomarcadores , Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Potenciales de Acción , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Humanos , Modelos Biológicos , Imagen Molecular , Miocitos Cardíacos/efectos de los fármacos , Fenetilaminas , Sulfonamidas
10.
Artículo en Inglés | MEDLINE | ID: mdl-28630169

RESUMEN

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia type 2 (CPVT2) results from autosomal recessive CASQ2 mutations, causing abnormal Ca2+-handling and malignant ventricular arrhythmias. We aimed to establish a patient-specific human induced pluripotent stem cell (hiPSC) model of CPVT2 and to use the generated hiPSC-derived cardiomyocytes to gain insights into patient-specific disease mechanism and pharmacotherapy. METHODS AND RESULTS: hiPSC cardiomyocytes were derived from a CPVT2 patient (D307H-CASQ2 mutation) and from healthy controls. Laser-confocal Ca2+ and voltage imaging showed significant Ca2+-transient irregularities, marked arrhythmogenicity manifested by early afterdepolarizations and triggered arrhythmias, and reduced threshold for store overload-induced Ca2+-release events in the CPVT2-hiPSC cardiomyocytes when compared with healthy control cells. Pharmacological studies revealed the prevention of adrenergic-induced arrhythmias by ß-blockers (propranolol and carvedilol), flecainide, and the neuronal sodium-channel blocker riluzole; a direct antiarrhythmic action of carvedilol (independent of its α/ß-adrenergic blocking activity), flecainide, and riluzole; and suppression of abnormal Ca2+ cycling by the ryanodine stabilizer JTV-519 and carvedilol. Mechanistic insights were gained on the different antiarrhythmic actions of the aforementioned drugs, with carvedilol and JTV-519 (but not flecainide or riluzole) acting primarily through sarcoplasmic reticulum stabilization. Finally, comparable outcomes were found between flecainide and labetalol antiarrhythmic effects in vitro and the clinical results in the same patient. CONCLUSIONS: These results demonstrate the ability of hiPSCs cardiomyocytes to recapitulate CPVT2 disease phenotype and drug response in the culture dish, to provide novel insights into disease and drug therapy mechanisms, and potentially to tailor patient-specific drug therapy.


Asunto(s)
Antiarrítmicos/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Medicina de Precisión , Taquicardia Ventricular/tratamiento farmacológico , Potenciales de Acción , Agonistas Adrenérgicos/farmacología , Señalización del Calcio/efectos de los fármacos , Calsecuestrina/genética , Calsecuestrina/metabolismo , Estudios de Casos y Controles , Línea Celular , Relación Dosis-Respuesta a Droga , Predisposición Genética a la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Mutación , Miocitos Cardíacos/metabolismo , Selección de Paciente , Fenotipo , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatología , Factores de Tiempo , Adulto Joven
11.
Stem Cell Reports ; 5(4): 582-96, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26372632

RESUMEN

The advent of the human-induced pluripotent stem cell (hiPSC) technology has transformed biomedical research, providing new tools for human disease modeling, drug development, and regenerative medicine. To fulfill its unique potential in the cardiovascular field, efficient methods should be developed for high-resolution, large-scale, long-term, and serial functional cellular phenotyping of hiPSC-derived cardiomyocytes (hiPSC-CMs). To achieve this goal, we combined the hiPSC technology with genetically encoded voltage (ArcLight) and calcium (GCaMP5G) fluorescent indicators. Expression of ArcLight and GCaMP5G in hiPSC-CMs permitted to reliably follow changes in transmembrane potential and intracellular calcium levels, respectively. This allowed monitoring short- and long-term changes in action-potential and calcium-handling properties and the development of arrhythmias in response to several pharmaceutical agents and in hiPSC-CMs derived from patients with different inherited arrhythmogenic syndromes. Combining genetically encoded fluorescent reporters with hiPSC-CMs may bring a unique value to the study of inherited disorders, developmental biology, and drug development and testing.


Asunto(s)
Potenciales de Acción , Calcio/metabolismo , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Arritmias Cardíacas/metabolismo , Calcio/análisis , Diferenciación Celular , Células Cultivadas , Expresión Génica , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Miocitos Cardíacos/metabolismo , Imagen Óptica/métodos , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética , Transducción Genética , Transgenes
12.
Circ Cardiovasc Genet ; 6(6): 557-68, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24200905

RESUMEN

BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a primary heart muscle disorder resulting from desmosomal protein mutations. ARVC is characterized pathologically by fibrofatty infiltration and clinically by arrhythmias and sudden cardiac death. We aimed to establish a patient-/disease-specific human induced pluripotent stem cell (hiPSC) model of ARVC. METHODS AND RESULTS: Dermal fibroblasts were obtained from 2 patients with ARVC with plakophilin-2 (PKP2) mutations, reprogrammed to generate hiPSCs, coaxed to differentiate into cardiomyocytes (CMs), and then compared with healthy control hiPSC-derived CMs (hiPSC-CMs). Real-time polymerase chain reaction showed a significant decrease in the expression of PKP2 in the ARVC-hiPSC-CMs. Immunostainings revealed reduced densities of PKP2, the associated desmosomal protein plakoglobin, and the gap-junction protein connexin-43. Electrophysiological assessment demonstrated prolonged field potential rise time in the ARVC-hiPSC-CMs. Transmission electron microscopy identified widened and distorted desmosomes in the ARVC-hiPSC-CMs. Clusters of lipid droplets were identified in the ARVC-CMs that displayed the more severe desmosomal pathology. This finding was associated with upregulation of the proadipogenic transcription factor peroxisome proliferator-activated receptor-γ. Exposure of the cells to apidogenic stimuli augmented desmosomal distortion and lipid accumulation. The latter phenomenon was prevented by application of a specific inhibitor of glycogen synthase kinase 3ß (6-bromoindirubin-3'-oxime). CONCLUSIONS: This study highlights the unique potential of the hiPSC technology for modeling inherited cardiac disorders in general and ARVC specifically. The hiPSC-CMs were demonstrated to recapitulate the ARVC phenotype in the dish, provide mechanistic insights into early disease pathogenesis, and provide a unique platform for drug discovery and testing in this disorder.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/metabolismo , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Cardiovasculares , Apoptosis , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/fisiopatología , Diferenciación Celular , Células Cultivadas , Conexina 43/metabolismo , Dermis/metabolismo , Dermis/patología , Desmosomas/efectos de los fármacos , Desmosomas/metabolismo , Electrocardiografía , Fibroblastos/fisiología , Expresión Génica , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Humanos , Inmunohistoquímica , Indoles/farmacología , Células Madre Pluripotentes Inducidas/fisiología , Microscopía Electrónica de Transmisión , Mutación , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Miocitos Cardíacos/ultraestructura , Oximas/farmacología , Placofilinas/genética , Placofilinas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , gamma Catenina/metabolismo
13.
Eur Heart J ; 34(21): 1575-86, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22621821

RESUMEN

AIMS: Myocardial cell replacement therapies are hampered by a paucity of sources for human cardiomyocytes and by the expected immune rejection of allogeneic cell grafts. The ability to derive patient-specific human-induced pluripotent stem cells (hiPSCs) may provide a solution to these challenges. We aimed to derive hiPSCs from heart failure (HF) patients, to induce their cardiomyocyte differentiation, to characterize the generated hiPSC-derived cardiomyocytes (hiPSC-CMs), and to evaluate their ability to integrate with pre-existing cardiac tissue. METHODS AND RESULTS: Dermal fibroblasts from two HF patients were reprogrammed by retroviral delivery of Oct4, Sox2, and Klf4 or by using an excisable polycistronic lentiviral vector. The resulting HF-hiPSCs displayed adequate reprogramming properties and could be induced to differentiate into cardiomyocytes with the same efficiency as control hiPSCs (derived from human foreskin fibroblasts). Gene expression and immunostaining studies confirmed the cardiomyocyte phenotype of the differentiating HF-hiPSC-CMs. Multi-electrode array recordings revealed the development of a functional cardiac syncytium and adequate chronotropic responses to adrenergic and cholinergic stimulation. Next, functional integration and synchronized electrical activities were demonstrated between hiPSC-CMs and neonatal rat cardiomyocytes in co-culture studies. Finally, in vivo transplantation studies in the rat heart revealed the ability of the HF-hiPSC-CMs to engraft, survive, and structurally integrate with host cardiomyocytes. CONCLUSIONS: Human-induced pluripotent stem cells can be established from patients with advanced heart failure and coaxed to differentiate into cardiomyocytes, which can integrate with host cardiac tissue. This novel source for patient-specific heart cells may bring a unique value to the emerging field of cardiac regenerative medicine.


Asunto(s)
Insuficiencia Cardíaca/patología , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Animales , Diferenciación Celular , Supervivencia Celular , Reprogramación Celular/efectos de los fármacos , Femenino , Vectores Genéticos , Insuficiencia Cardíaca/terapia , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Cariotipo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/farmacología , Factor 3 de Transcripción de Unión a Octámeros/farmacología , Ratas , Ratas Sprague-Dawley , Factores de Transcripción SOXB1/farmacología , Transgenes , Trasplante Heterólogo
14.
J Am Coll Cardiol ; 60(11): 990-1000, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22749309

RESUMEN

OBJECTIVES: The goal of this study was to establish a patient-specific human-induced pluripotent stem cells (hiPSCs) model of catecholaminergic polymorphic ventricular tachycardia (CPVT). BACKGROUND: CPVT is a familial arrhythmogenic syndrome characterized by abnormal calcium (Ca(2+)) handling, ventricular arrhythmias, and sudden cardiac death. METHODS: Dermal fibroblasts were obtained from a CPVT patient due to the M4109R heterozygous point RYR2 mutation and reprogrammed to generate the CPVT-hiPSCs. The patient-specific hiPSCs were coaxed to differentiate into the cardiac lineage and compared with healthy control hiPSCs-derived cardiomyocytes (hiPSCs-CMs). RESULTS: Intracellular electrophysiological recordings demonstrated the development of delayed afterdepolarizations in 69% of the CPVT-hiPSCs-CMs compared with 11% in healthy control cardiomyocytes. Adrenergic stimulation by isoproterenol (1 µM) or forskolin (5 µM) increased the frequency and magnitude of afterdepolarizations and also led to development of triggered activity in the CPVT-hiPSCs-CMs. In contrast, flecainide (10 µM) and thapsigargin (10 µM) eliminated all afterdepolarizations in these cells. The latter finding suggests an important role for internal Ca(2+) stores in the pathogenesis of delayed afterdepolarizations. Laser-confocal Ca(2+) imaging revealed significant whole-cell [Ca(2+)] transient irregularities (frequent local and large-storage Ca(2+)-release events, broad and double-humped transients, and triggered activity) in the CPVT cardiomyocytes that worsened with adrenergic stimulation and Ca(2+) overload and improved with beta-blockers. Store-overload-induced Ca(2+) release was also identified in the hiPSCs-CMs and the threshold for such events was significantly reduced in the CPVT cells. CONCLUSIONS: This study highlights the potential of hiPSCs for studying inherited arrhythmogenic syndromes, in general, and CPVT specifically. As such, it represents a promising paradigm to study disease mechanisms, optimize patient care, and aid in the development of new therapies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Taquicardia Ventricular/fisiopatología , Arritmias Cardíacas/genética , Calcio/metabolismo , Técnicas Electrofisiológicas Cardíacas , Expresión Génica , Humanos , Modelos Cardiovasculares , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo
15.
Biomaterials ; 32(30): 7514-23, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21783246

RESUMEN

Myocardial cell-replacement strategies are hampered by limited sources for human cardiomyocytes and by significant cell loss following transplantation. We tested the hypothesis that a combined delivery of cardiomyocytes with an in-situ polymerizable hydrogel into a post-MI rat heart will result in better functional outcomes than each intervention alone. A photopolymerizable, biodegradable, PEGylated-fibrinogen (PF) hydrogel matrix was used as the carrier for the cardiomyocytes [neonatal rat ventricular cardiomyocytes (NRVCMs) or human embryonic stem cell-derived cardiomyocytes (hESC-CMs)]. Infarcted rat hearts (LAD ligation) were randomized to injection of saline, NRVCMs, biopolymer, or combined biopolymer-cell delivery. Echocardiography revealed typical post-infarction remodeling after 30 days in the saline-injected control group [deterioration of fractional shortening (FS) by 31.0 ± 3.6%]. Injection of NRVCMs or PF alone significantly (p < 0.01) altered this remodeling process (slightly increasing FS by 3.1 ± 6.6% and 0.5 ± 5.3% respectively). Co-injection of the NRVCMs with PF matrix resulted in a significant increase in the cell-graft area (by 144%) and in the highest improvements in FS (by 26.3 ± 6.6%). Finally, feasibility studies were performed with the PF matrix and hESC-CMs. We conclude that an injectable in-situ forming hydrogel can act as a cardiomyocyte cell-carrier and add to the beneficial effects of the grafted cells in preventing unfavorable post-infarction cardiac remodeling.


Asunto(s)
Fibrinógeno/química , Infarto del Miocardio/cirugía , Miocitos Cardíacos/trasplante , Polietilenglicoles/química , Ingeniería de Tejidos/métodos , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Células Cultivadas , Ecocardiografía , Células Madre Embrionarias/citología , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Miocardio/citología , Miocardio/patología , Miocitos Cardíacos/citología , Ratas , Ratas Endogámicas F344
16.
PLoS One ; 6(4): e18037, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21483779

RESUMEN

BACKGROUND: The ability to establish human induced pluripotent stem cells (hiPSCs) by reprogramming of adult fibroblasts and to coax their differentiation into cardiomyocytes opens unique opportunities for cardiovascular regenerative and personalized medicine. In the current study, we investigated the Ca(2+)-handling properties of hiPSCs derived-cardiomyocytes (hiPSC-CMs). METHODOLOGY/PRINCIPAL FINDINGS: RT-PCR and immunocytochemistry experiments identified the expression of key Ca(2+)-handling proteins. Detailed laser confocal Ca(2+) imaging demonstrated spontaneous whole-cell [Ca(2+)](i) transients. These transients required Ca(2+) influx via L-type Ca(2+) channels, as demonstrated by their elimination in the absence of extracellular Ca(2+) or by administration of the L-type Ca(2+) channel blocker nifedipine. The presence of a functional ryanodine receptor (RyR)-mediated sarcoplasmic reticulum (SR) Ca(2+) store, contributing to [Ca(2+)](i) transients, was established by application of caffeine (triggering a rapid increase in cytosolic Ca(2+)) and ryanodine (decreasing [Ca(2+)](i)). Similarly, the importance of Ca(2+) reuptake into the SR via the SR Ca(2+) ATPase (SERCA) pump was demonstrated by the inhibiting effect of its blocker (thapsigargin), which led to [Ca(2+)](i) transients elimination. Finally, the presence of an IP3-releasable Ca(2+) pool in hiPSC-CMs and its contribution to whole-cell [Ca(2+)](i) transients was demonstrated by the inhibitory effects induced by the IP3-receptor blocker 2-Aminoethoxydiphenyl borate (2-APB) and the phospholipase C inhibitor U73122. CONCLUSIONS/SIGNIFICANCE: Our study establishes the presence of a functional, SERCA-sequestering, RyR-mediated SR Ca(2+) store in hiPSC-CMs. Furthermore, it demonstrates the dependency of whole-cell [Ca(2+)](i) transients in hiPSC-CMs on both sarcolemmal Ca(2+) entry via L-type Ca(2+) channels and intracellular store Ca(2+) release.


Asunto(s)
Calcio/metabolismo , Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Animales , Transporte Biológico , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Línea Celular , Regulación de la Expresión Génica , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Espacio Intracelular/metabolismo , Ratones , Miocitos Cardíacos/enzimología , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sarcolema/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
17.
Nature ; 471(7337): 225-9, 2011 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-21240260

RESUMEN

The ability to generate patient-specific human induced pluripotent stem cells (iPSCs) offers a new paradigm for modelling human disease and for individualizing drug testing. Congenital long QT syndrome (LQTS) is a familial arrhythmogenic syndrome characterized by abnormal ion channel function and sudden cardiac death. Here we report the development of a patient/disease-specific human iPSC line from a patient with type-2 LQTS (which is due to the A614V missense mutation in the KCNH2 gene). The generated iPSCs were coaxed to differentiate into the cardiac lineage. Detailed whole-cell patch-clamp and extracellular multielectrode recordings revealed significant prolongation of the action-potential duration in LQTS human iPSC-derived cardiomyocytes (the characteristic LQTS phenotype) when compared to healthy control cells. Voltage-clamp studies confirmed that this action-potential-duration prolongation stems from a significant reduction of the cardiac potassium current I(Kr). Importantly, LQTS-derived cells also showed marked arrhythmogenicity, characterized by early-after depolarizations and triggered arrhythmias. We then used the LQTS human iPSC-derived cardiac-tissue model to evaluate the potency of existing and novel pharmacological agents that may either aggravate (potassium-channel blockers) or ameliorate (calcium-channel blockers, K(ATP)-channel openers and late sodium-channel blockers) the disease phenotype. Our study illustrates the ability of human iPSC technology to model the abnormal functional phenotype of an inherited cardiac disorder and to identify potential new therapeutic agents. As such, it represents a promising paradigm to study disease mechanisms, optimize patient care (personalized medicine), and aid in the development of new therapies.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Células Madre Pluripotentes Inducidas/patología , Síndrome de QT Prolongado/patología , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Adulto , Transdiferenciación Celular , Células Cultivadas , Reprogramación Celular/genética , Canal de Potasio ERG1 , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Femenino , Fibroblastos/citología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Síndrome de QT Prolongado/clasificación , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/genética , Mutación Missense/genética , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Fenotipo , Medicina de Precisión/métodos
18.
Heart Rhythm ; 8(1): 121-30, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20951232

RESUMEN

BACKGROUND: Abnormal conduction underlies both bradyarrhythmias and re-entrant tachyarrhythmias. However, no practical way exists for restoring or improving conduction in areas of conduction slowing or block. OBJECTIVE: This study sought to test the feasibility of a novel strategy for conduction repair using genetically engineered cells designed to form biological "conducting cables." METHODS: An in vitro model of conduction block was established using spatially separated, spontaneously contracting, nonsynchronized human embryonic stem cell-derived cardiomyocytes clusters. Immunostaining, dye transfer, intracellular recordings, and multielectrode array (MEA) studies were performed to evaluate the ability of genetically engineered HEK293 cells, expressing the SCN5A-encoded Na(+) channel, to couple with cultured cardiomyocytes and to synchronize their electrical activity. RESULTS: Connexin-43 immunostaining and calcein dye-transfer experiments confirmed the formation of functional gap junctions between the engineered cells and neighboring cardiomyocytes. MEA and intracellular recordings were performed to assess the ability of the engineered cells to restore conduction in the co-cultures. Synchronization was defined by establishment of fixed local activation time differences between the cardiomyocytes clusters and convergence of their activation cycle lengths. Nontransfected control cells were able to induce synchronization between cardiomyocytes clusters separated by distances up to 300 µm (n = 21). In contrast, the Na(+) channel-expressing cells synchronized contractions between clusters separated by up to 1,050 µm, the longest distance studied (n = 23). Finally, engineered cells expressing the voltage-sensitive K(v)1.3 potassium channel prevented synchronization at any distance. CONCLUSION: Genetically engineered cells, transfected to express Na(+) channels, can form biological conducting cables bridging and coupling spatially separated cardiomyocytes. This novel cell therapy approach might be useful for the development of therapeutic strategies for both bradyarrhythmias and tachyarrhythmias.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/terapia , Terapia Genética/métodos , Sistema de Conducción Cardíaco/fisiopatología , Técnicas de Cocultivo , Conexina 43/metabolismo , Células Madre Embrionarias , Estudios de Factibilidad , Uniones Comunicantes , Ingeniería Genética , Células HEK293 , Humanos , Miocitos Cardíacos/fisiología , Técnicas de Placa-Clamp , Canales de Sodio/fisiología , Transfección
19.
Tissue Eng Part A ; 17(7-8): 1027-37, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21087204

RESUMEN

Cardiomyocytes derived from induced pluripotent stem (iPS) cells hold great promise for basic and translational cardiovascular research. For the successful implementation of this unique technology, however, it is essential to establish efficient, reproducible, and safe strategies to produce cardiomyocytes in a scalable manner. The aim of the current study was to establish scalable bioprocess that allows direct embryoid bodies formation for the differentiation of murine iPS cells (generated without the oncogene c-Myc) into cardiomyocytes. The cardiomyocytes' structural, molecular, and functional properties were then compared to ones derived by the well-established static culture system. Similar gene expression patterns were observed in both differentiation systems with the sequential expression of mesoderm markers, cardiac transcription factors, and cardiomyocyte structural genes. Cells in the contracting embryoid bodies were stained positively for cardiac troponin-I, sarcomeric α-actinin, cardiac troponin-T, and connexin-43. Electrophysiological measurements using multielectrode array recordings demonstrated that the bioreactor-derived cardiomyocytes were functionally similar to static derived cardiomyocytes and responded appropriately to different drugs, including adrenergic and muscarinic agonists (isoproterenol and carbamylcholine, respectively) and the gap junction uncoupler heptanol. Our study describes, for the first time, a strategy for scalable differentiation of c-Myc-free iPS cells into cardiomyocytes with the appropriate molecular, structural, and functional properties. The result of this study should have important implications for several cardiovascular research areas and specifically for the emerging field of regenerative medicine.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Diferenciación Celular/fisiología , Línea Celular , Citometría de Flujo , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Methods Mol Biol ; 660: 85-95, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20680814

RESUMEN

A decade has passed since the initial derivation of human embryonic stem cells (hESC). The ensuing years have witnessed a significant progress in the development of methodologies allowing cell cultivation, differentiation, genetic manipulation, and in vivo transplantation. Specifically, the potential to derive human cardiomyocytes from the hESC lines, which can be used for several basic and applied cardiovascular research areas including in the emerging field of cardiac regenerative medicine, attracted significant attention from the scientific community. This resulted in the development of protocols for the cultivation of hESC and their successful differentiation toward the cardiomyocyte lineage fate. In this chapter, we will describe in detail methods related to the cultivation, genetic manipulation, selection, and in vivo transplantation of hESC-derived cardiomyocytes.


Asunto(s)
Células Madre Embrionarias/citología , Miocitos Cardíacos/citología , Animales , Técnicas de Cultivo de Célula , Línea Celular , Humanos , Ratones , Infarto del Miocardio/terapia , Ratas , Trasplante de Células Madre/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...