Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioinformatics ; 39(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37285317

RESUMEN

MOTIVATION: Extracellular particles (EPs) are the focus of a rapidly growing area of exploration due to the widespread interest in understanding their roles in health and disease. However, despite the general need for EP data sharing and established community standards for data reporting, no standard repository for EP flow cytometry data captures rigor and minimum reporting standards such as those defined by MIFlowCyt-EV (https://doi.org/10.1080/20013078.2020.1713526). We sought to address this unmet need by developing the NanoFlow Repository. RESULTS: We have developed The NanoFlow Repository to provide the first implementation of the MIFlowCyt-EV framework. AVAILABILITY AND IMPLEMENTATION: The NanoFlow Repository is freely available and accessible online at https://genboree.org/nano-ui/. Public datasets can be explored and downloaded at https://genboree.org/nano-ui/ld/datasets. The NanoFlow Repository's backend is built using the Genboree software stack that powers the ClinGen Resource, specifically the Linked Data Hub (LDH), a REST API framework written in Node.js, developed initially to aggregate data within ClinGen (https://ldh.clinicalgenome.org/ldh/ui/about). NanoFlow's LDH (NanoAPI) is available at https://genboree.org/nano-api/srvc. NanoAPI is supported by a Node.js Genboree authentication and authorization service (GbAuth), a graph database called ArangoDB, and an Apache Pulsar message queue (NanoMQ) to manage data inflows into NanoAPI. The website for NanoFlow Repository is built with Vue.js and Node.js (NanoUI) and supports all major browsers.


Asunto(s)
Programas Informáticos , Bases de Datos Factuales , Citometría de Flujo
2.
Front Microbiol ; 13: 844287, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694290

RESUMEN

A thermophilic Geobacillus bacterial strain, WSUCF1 contains different carbohydrate-active enzymes (CAZymes) capable of hydrolyzing hemicellulose in lignocellulosic biomass. We used proteomic, genomic, and bioinformatic tools, and genomic data to analyze the relative abundance of cellulolytic, hemicellulolytic, and lignin modifying enzymes present in the secretomes. Results showed that CAZyme profiles of secretomes varied based on the substrate type and complexity, composition, and pretreatment conditions. The enzyme activity of secretomes also changed depending on the substrate used. The secretomes were used in combination with commercial and purified enzymes to carry out saccharification of ammonia fiber expansion (AFEX)-pretreated corn stover and extractive ammonia (EA)-pretreated corn stover. When WSUCF1 bacterial secretome produced at different conditions was combined with a small percentage of commercial enzymes, we observed efficient saccharification of EA-CS, and the results were comparable to using a commercial enzyme cocktail (87% glucan and 70% xylan conversion). It also opens the possibility of producing CAZymes in a biorefinery using inexpensive substrates, such as AFEX-pretreated corn stover and Avicel, and eliminates expensive enzyme processing steps that are used in enzyme manufacturing. Implementing in-house enzyme production is expected to significantly reduce the cost of enzymes and biofuel processing cost.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...