Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int J Mol Sci ; 24(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37240195

RESUMEN

In recent years, new therapies have been developed based on molecules that target molecular mechanisms involved in both the initiation and maintenance of the oncogenic process. Among these molecules are the poly(ADP-ribose) polymerase 1 (PARP1) inhibitors. PARP1 has emerged as a target with great therapeutic potential for some tumor types, drawing attention to this enzyme and resulting in many small molecule inhibitors of its enzymatic activity. Therefore, many PARP inhibitors are currently in clinical trials for the treatment of homologous recombination (HR)-deficient tumors, BRCA-related cancers, taking advantage of synthetic lethality. In addition, several novel cellular functions unrelated to its role in DNA repair have been described, including post-translational modification of transcription factors, or acting through protein-protein interactions as a co-activator or co-repressor of transcription. Previously, we reported that this enzyme may play a key role as a transcriptional co-activator of an important component of cell cycle regulation, the transcription factor E2F1. Here, we show that PARP inhibitors, which interfere with its activity in cell cycle regulation, perform this without affecting its enzymatic function.


Asunto(s)
Neoplasias , Poli(ADP-Ribosa) Polimerasas , Humanos , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Reparación del ADN , Factores de Transcripción/genética
2.
Front Endocrinol (Lausanne) ; 14: 1093376, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36967809

RESUMEN

Thermal homeostasis is a fundamental process in mammals, which allows the maintenance of a constant internal body temperature to ensure an efficient function of cells despite changes in ambient temperature. Increasing evidence has revealed the great impact of thermoregulation on energy homeostasis. Homeothermy requires a fine regulation of food intake, heat production, conservation and dissipation and energy expenditure. A great interest on this field of research has re-emerged following the discovery of thermogenic brown adipose tissue and browning of white fat in adult humans, with a potential clinical relevance on obesity and metabolic comorbidities. However, most of our knowledge comes from male animal models or men, which introduces unwanted biases on the findings. In this review, we discuss how differences in sex-dependent characteristics (anthropometry, body composition, hormonal regulation, and other sexual factors) influence numerous aspects of thermal regulation, which impact on energy homeostasis. Individuals of both sexes should be used in the experimental paradigms, considering the ovarian cycles and sexual hormonal regulation as influential factors in these studies. Only by collecting data in both sexes on molecular, functional, and clinical aspects, we will be able to establish in a rigorous way the real impact of thermoregulation on energy homeostasis, opening new avenues in the understanding and treatment of obesity and metabolic associated diseases.


Asunto(s)
Regulación de la Temperatura Corporal , Caracteres Sexuales , Animales , Masculino , Femenino , Humanos , Homeostasis , Obesidad/terapia , Mamíferos
5.
J Cell Physiol ; 236(11): 7390-7404, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33959982

RESUMEN

Due to its aggressive and invasive nature glioblastoma (GBM), the most common and aggressive primary brain tumour in adults, remains almost invariably lethal. Significant advances in the last several years have elucidated much of the molecular and genetic complexities of GBM. However, GBM exhibits a vast genetic variation and a wide diversity of phenotypes that have complicated the development of effective therapeutic strategies. This complex pathogenesis makes necessary the development of experimental models that could be used to further understand the disease, and also to provide a more realistic testing ground for potential therapies. In this report, we describe the process of transformation of primary mouse embryo astrocytes into immortalized cultures with neural stem cell characteristics, that are able to generate GBM when injected into the brain of C57BL/6 mice, or heterotopic tumours when injected IV. Overall, our results show that oncogenic transformation is the fate of NSC if cultured for long periods in vitro. In addition, as no additional hit is necessary to induce the oncogenic transformation, our model may be used to investigate the pathogenesis of gliomagenesis and to test the effectiveness of different drugs throughout the natural history of GBM.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Transformación Celular Neoplásica/metabolismo , Glioblastoma/metabolismo , Células-Madre Neurales/metabolismo , Animales , Neoplasias Encefálicas/patología , Línea Celular Transformada , Proliferación Celular , Transformación Celular Neoplásica/patología , Glioblastoma/patología , Masculino , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Células-Madre Neurales/patología , Fenotipo , Carga Tumoral
7.
Front Cell Infect Microbiol ; 11: 770668, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35223533

RESUMEN

Although clustering by operational taxonomic units (OTUs) is widely used in the oral microbial literature, no research has specifically evaluated the extent of the limitations of this sequence clustering-based method in the oral microbiome. Consequently, our objectives were to: 1) evaluate in-silico the coverage of a set of previously selected primer pairs to detect oral species having 16S rRNA sequence segments with ≥97% similarity; 2) describe oral species with highly similar sequence segments and determine whether they belong to distinct genera or other higher taxonomic ranks. Thirty-nine primer pairs were employed to obtain the in-silico amplicons from the complete genomes of 186 bacterial and 135 archaeal species. Each fasta file for the same primer pair was inserted as subject and query in BLASTN for obtaining the similarity percentage between amplicons belonging to different oral species. Amplicons with 100% alignment coverage of the query sequences and with an amplicon similarity value ≥97% (ASI97) were selected. For each primer, the species coverage with no ASI97 (SC-NASI97) was calculated. Based on the SC-NASI97 parameter, the best primer pairs were OP_F053-KP_R020 for bacteria (region V1-V3; primer pair position for Escherichia coli J01859.1: 9-356); KP_F018-KP_R002 for archaea (V4; undefined-532); and OP_F114-KP_R031 for both (V3-V5; 340-801). Around 80% of the oral-bacteria and oral-archaea species analyzed had an ASI97 with at least one other species. These very similar species play different roles in the oral microbiota and belong to bacterial genera such as Campylobacter, Rothia, Streptococcus and Tannerella, and archaeal genera such as Halovivax, Methanosarcina and Methanosalsum. Moreover, ~20% and ~30% of these two-by-two similarity relationships were established between species from different bacterial and archaeal genera, respectively. Even taxa from distinct families, orders, and classes could be grouped in the same possible OTU. Consequently, regardless of the primer pair used, sequence clustering with a 97% similarity provides an inaccurate description of oral-bacterial and oral-archaeal species, which can greatly affect microbial diversity parameters. As a result, OTU clustering conditions the credibility of associations between some oral species and certain health and disease conditions. This significantly limits the comparability of the microbial diversity findings reported in oral microbiome literature.


Asunto(s)
Microbiota , Archaea/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos
8.
Cancers (Basel) ; 12(10)2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-33050515

RESUMEN

In recent years, poly (ADP-ribose) polymerase (PARP) inhibitors have been evaluated for treating homologous recombination-deficient tumours, taking advantage of synthetic lethality. However, increasing evidence indicates that PARP1 exert several cellular functions unrelated with their role on DNA repair, including function as a co-activator of transcription through protein-protein interaction with E2F1. Since the RB/E2F1 pathway is among the most frequently mutated in many tumour types, we investigated whether the absence of PARP activity could counteract the consequences of E2F1 hyperactivation. Our results demonstrate that genetic ablation of Parp1 extends the survival of Rb-null embryos, while genetic inactivation of Parp1 results in reduced development of pRb-dependent tumours. Our results demonstrate that PARP1 plays a key role as a transcriptional co-activator of the transcription factor E2F1, an important component of the cell cycle regulation. Considering that most oncogenic processes are associated with cell cycle deregulation, the disruption of this PARP1-E2F1 interaction could provide a new therapeutic target of great interest and a wide spectrum of indications.

9.
Dev Dyn ; 249(1): 112-124, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31412150

RESUMEN

BACKGROUND: Neural stem cells (NSC) have been extensively used as a tool to investigate the mechanisms responsible for neural repair, and they have been also considered as the source for a series of promising replacement therapies in various neurodegenerative diseases. However, their use is limited by their relative rarity and anatomical localization, and also because, the methods for isolation and characterization are usually time consuming and have some technical limitations. RESULTS: In this study, we describe a resource and method for obtaining immortalized cells with NSC characteristics obtained from mouse brain embryo. CONCLUSIONS: Because these cells can be maintained indefinitely in culture, they may constitute a permanent source of NSC that can be used for research studies on neural development and regeneration.


Asunto(s)
Encéfalo/embriología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Embrión de Mamíferos/metabolismo , Ratones , Enfermedades Neurodegenerativas/metabolismo
10.
J Cell Physiol ; 234(5): 7236-7246, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30370618

RESUMEN

Myostatin is a member of the transforming growth factor ß (TGFß) superfamily that has a well-established role as a mediator of muscle growth and development. However, myostatin is now emerging as a pleiotropic hormone with multiple actions in the regulation of the metabolism as well as several aspects of both cardiac and smooth muscle cells physiology. In addition, myostatin is also expressed in several nonmuscular cells where its physiological role remains to be elucidated in most cases. In this report, we have shown that both myostatin and its receptor system are expressed in blood cells and in hematopoietic cell lines. Furthermore, myostatin treatment promotes differentiation of both HL60 and K562 cells through a mechanism that involves activation of extracellular signal-regulated kinases 1/2 and p38-mitogen-activated protein kinase, thus leading to the possibility that myostatin may be a paracrine/autocrine factor involved in the control of haematopoiesis. In addition, the presence of myostatin expression in immune cells could envisage a novel role for the hormone in the pathogenesis of inflammatory diseases.


Asunto(s)
Comunicación Autocrina , Células Sanguíneas/metabolismo , Hematopoyesis , Miostatina/metabolismo , Comunicación Paracrina , Adulto , Supervivencia Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Células HL-60 , Humanos , Células Jurkat , Células K562 , Masculino , Miositis/sangre , Miositis/metabolismo , Miostatina/genética , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Ther Adv Cardiovasc Dis ; 12(2): 53-72, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29271292

RESUMEN

Revascularization for chronic limb-threatening ischemia (CLTI) is necessary to alleviate symptoms and wound healing. When it fails or is not possible, there are few alternatives to avoid limb amputation in these patients. Although experimental studies with stem cells and growth factors have shown promise, clinical trials have demonstrated inconsistent results because CLTI patients generally need arteriogenesis rather than angiogenesis. Moreover, in addition to the perfusion of the limb, there is the need to improve the neuropathic response for wound healing, especially in diabetic patients. Growth hormone (GH) is a pleiotropic hormone capable of boosting the aforementioned processes and adds special benefits for the redox balance. This hormone has the potential to mitigate symptoms in ischemic patients with no other options and improves the cardiovascular complications associated with the disease. Here, we discuss the pros and cons of using GH in such patients, focus on its effects on peripheral arteries, and analyze the possible benefits of treating CLTI with this hormone.


Asunto(s)
Inductores de la Angiogénesis/uso terapéutico , Hormona de Crecimiento Humana/uso terapéutico , Isquemia/tratamiento farmacológico , Recuperación del Miembro/métodos , Extremidad Inferior/irrigación sanguínea , Neovascularización Fisiológica/efectos de los fármacos , Enfermedad Arterial Periférica/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Inductores de la Angiogénesis/efectos adversos , Animales , Enfermedad Crónica , Angiografía por Tomografía Computarizada , Hormona de Crecimiento Humana/efectos adversos , Humanos , Isquemia/diagnóstico por imagen , Isquemia/fisiopatología , Recuperación del Miembro/efectos adversos , Enfermedad Arterial Periférica/diagnóstico por imagen , Enfermedad Arterial Periférica/fisiopatología , Flujo Sanguíneo Regional , Resultado del Tratamiento
12.
Sci Rep ; 7(1): 12991, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-29021613

RESUMEN

Oncogene-induced senescence (OIS) is a complex process, in which activation of oncogenic signals during early tumorigenesis results in a high degree of DNA replication stress. The ensuing response to the DNA damage produces a permanent G1 arrest that prevents unlimited cell proliferation and lessens the development of tumours. However, despite the role of OIS in the proliferative arrest resulting from an activating oncogenic-lesion has obtained wide support, there is also evidence indicating that cells may overcome oncogene-induced senescence under some circumstances. In this study, we have investigated the possibility that some of the assumptions on the role of DNA damage response (DDR) in triggering OIS may depend on the fact that most of the available data were obtained in mouse embryo fibroblast. By comparing the degree of OIS observed in mouse embryo fibroblasts (MEF) and mouse embryo astrocytes (MEA) obtained from the same individuals we have demonstrated that, despite truthful activation of DDR in both cell types, significant levels of OIS were only detected in MEF. Therefore, this uncoupling between OIS and DDR observed in astrocytes supports the intriguingly possibility that OIS is not a widespread response mechanism to DDR.


Asunto(s)
Astrocitos/citología , Astrocitos/metabolismo , Senescencia Celular/genética , Daño del ADN , Replicación del ADN , Embrión de Mamíferos/citología , Oncogenes , Animales , Células Cultivadas , Ratones , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
13.
Int J Mol Sci ; 18(6)2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28621713

RESUMEN

This study was designed to investigate a possible role of the N-terminal tripeptide of insulin-like growth factor-1 (IGF-I), Gly-Pro-Glu (GPE), physiologically generated in neurons following IGF-I-specific cleavage, in promoting neural regeneration after an injury. Primary cultures of mouse neural stem cells (NSCs), obtained from 13.5 Days post-conception (dpc) mouse embryos, were challenged with either GPE, growth hormone (GH), or GPE + GH and the effects on cell proliferation, migration, and survival were evaluated both under basal conditions and in response to a wound healing assay. The cellular pathways activated by GPE were also investigated by using specific chemical inhibitors. The results of the study indicate that GPE treatment promotes the proliferation and the migration of neural stem cells in vitro through a mechanism that involves the activation of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase PI3K-Akt pathways. Intriguingly, both GPE effects and the signaling pathways activated were similar to those observed after GH treatment. Based upon the results obtained from this study, GPE, as well as GH, may be useful in promoting neural protection and/or regeneration after an injury.


Asunto(s)
Movimiento Celular , Proliferación Celular , Células-Madre Neurales/citología , Oligopéptidos/metabolismo , Animales , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hormona del Crecimiento/metabolismo , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , Neurogénesis , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
14.
BMC Neurosci ; 15: 100, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25156632

RESUMEN

BACKGROUND: Accumulating evidence suggests that growth hormone (GH) may play a major role in the regulation of postnatal neurogenesis, thus supporting the possibility that it may be also involved in promoting brain repair after brain injury. In order to gain further insight on this possibility, in this study we have investigated the pathways signaling the effect of GH treatment on the proliferation and survival of hippocampal subgranular zone (SGZ)-derived neurospheres. RESULTS: Our results demonstrate that GH treatment promotes both proliferation and survival of SGZ neurospheres. By using specific chemical inhibitors we have been also able to demonstrate that GH treatment promotes the activation of both Akt-mTOR and JNK signaling pathways, while blockade of these pathways either reduces or abolishes the GH effects. In contrast, no effect of GH on the activation of the Ras-ERK pathway was observed after GH treatment, despite blockade of this signaling path also resulted in a significant reduction of GH effects. Interestingly, SGZ cells were also capable of producing GH, and blockade of endogenous GH also resulted in a decrease in the proliferation and survival of SGZ neurospheres. CONCLUSIONS: Altogether, our findings suggest that GH treatment may promote the proliferation and survival of neural progenitors. This effect may be elicited by cooperating with locally-produced GH in order to increase the response of neural progenitors to adequate stimuli. On this view, the possibility of using GH treatment to promote neurogenesis and cell survival in some acquired neural injuries may be envisaged.


Asunto(s)
Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Hormona del Crecimiento/metabolismo , Hipocampo/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hormona del Crecimiento/antagonistas & inhibidores , Hipocampo/efectos de los fármacos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones Endogámicos C57BL , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Recombinantes/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Proteínas ras/antagonistas & inhibidores , Proteínas ras/metabolismo
15.
Cell Physiol Biochem ; 32(1): 111-20, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23868143

RESUMEN

BACKGROUND: Fas/CD95 is the best-studied member of the death receptor (DR) superfamily in the central nervous system where it can trigger cellular responses other than apoptosis, including the promotion of neurogenesis and neuritogenesis, stimulation of the progression of gliomas, and regulation of the immune response of astrocytes. METHODS: We have investigated the role of Fas/CD95 in the regulation of the proliferation of fetal astrocytes in vitro, as well as the signalling pathways involved. RESULTS: Fas/CD95 ligation stimulated the proliferation of primary fetal astrocytes, through a mechanism that depends on the activation of caspase 8 and subsequent phosphorylation of extracellular signal regulated kinase (ERK). Interestingly this proliferative effect is only observed with a low dose of the Fas/CD95 agonist. In contrast, when primary astrocytes are challenged with a high dose of the Fas/CD95 agonist significant cell death occurs. CONCLUSIONS: Our findings support that, besides its effects on cell survival, Fas/CD95 may play a complex and prominent role in the regulation of astrocyte proliferation during development.


Asunto(s)
Astrocitos/citología , Caspasa 8/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Receptor fas/metabolismo , Animales , Astrocitos/metabolismo , Proliferación Celular , Células Cultivadas , Femenino , Feto/citología , Fosforilación , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Receptor fas/agonistas
16.
Neurosci Res ; 76(4): 179-86, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23602740

RESUMEN

Growth hormone (GH) is a pleiotropic hormone that exerts important functions in the control of brain development as well as in the regulation neuronal differentiation and function, together with several behavioral and psychological effects that have been linked to its modulatory actions on brain neurotransmitters. In addition, the possibility that GH may play a role on brain repair after injury has been also envisaged, and a number of reports have shown that GH administration following injury confers neuroprotection and accelerates the recovery of some neural functions. In this review we have analyzed the state of the art of GH administration in several neural diseases. Though more studies are still necessary in order to completely understand the importance of GH in these processes, the promising results obtained so far, together with the absence of untoward effects during GH therapy, encourages the development of clinical assays in order to further support the use GH treatment in neural diseases in which neuroprotection and/or neuroregeneration are involved.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Hormona del Crecimiento/uso terapéutico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Animales , Cognición/efectos de los fármacos , Humanos , Regeneración Nerviosa
17.
J. physiol. biochem ; 69(1): 15-23, mar. 2013.
Artículo en Inglés | IBECS | ID: ibc-121983

RESUMEN

Confusing results have been reported regarding the influence of nutritional status on myostatin levels. Some studies indicate that short-term fasting results in increased myostatin mRNA levels in skeletal muscle, evident in several species. In contrast, other studies have demonstrated either a decrease or no change in myostatin levels during fasting. In the present study, we investigated the effect of different patterns of food deprivation on muscle myostatin expression in both newborn and adult rats. Adjustment of litter size in neonatal rats is a well-established model to study the effect of early overfeeding or underfeeding on body composition and in this study resulted in modifications in the pattern of muscle myostatin expression. Rat pups growing in large litters (22–24 newborns) showed a decrease in muscle myostatin mRNA and protein levels at 24 days of age. Interestingly, these effects were maintained at 60 days of age despite rats having free access to food since weaning, thus suggesting that changes in myostatin expression induced by neonatal reduction of food intake are long-lasting. In contrast, no changes in myostatin mRNA levels were observed in adult rats when food intake was decreased during 7 days by either food restriction or central leptin treatment. Similar results were obtained when food restriction was maintained in adult rats for a longer period (7 weeks), despite significant muscle loss. Overall, these data suggest that myostatin gene expression is programmed by nutritional status in neonatal life (AU)


Asunto(s)
Animales , Ratas , Miostatina , Desarrollo Fetal/fisiología , Desnutrición/fisiopatología , Estado Nutricional , ARN Mensajero/análisis , Músculo Esquelético/fisiopatología
18.
J Physiol Biochem ; 69(1): 15-23, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22684687

RESUMEN

Confusing results have been reported regarding the influence of nutritional status on myostatin levels. Some studies indicate that short-term fasting results in increased myostatin mRNA levels in skeletal muscle, evident in several species. In contrast, other studies have demonstrated either a decrease or no change in myostatin levels during fasting. In the present study, we investigated the effect of different patterns of food deprivation on muscle myostatin expression in both newborn and adult rats. Adjustment of litter size in neonatal rats is a well-established model to study the effect of early overfeeding or underfeeding on body composition and in this study resulted in modifications in the pattern of muscle myostatin expression. Rat pups growing in large litters (22-24 newborns) showed a decrease in muscle myostatin mRNA and protein levels at 24 days of age. Interestingly, these effects were maintained at 60 days of age despite rats having free access to food since weaning, thus suggesting that changes in myostatin expression induced by neonatal reduction of food intake are long-lasting. In contrast, no changes in myostatin mRNA levels were observed in adult rats when food intake was decreased during 7 days by either food restriction or central leptin treatment. Similar results were obtained when food restriction was maintained in adult rats for a longer period (7 weeks), despite significant muscle loss. Overall, these data suggest that myostatin gene expression is programmed by nutritional status in neonatal life.


Asunto(s)
Privación de Alimentos , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/efectos de los fármacos , Miostatina/genética , ARN Mensajero/genética , Factores de Edad , Animales , Animales Recién Nacidos , Ingestión de Alimentos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hiperfagia , Leptina/farmacología , Tamaño de la Camada , Masculino , Músculo Esquelético/metabolismo , Miostatina/metabolismo , ARN Mensajero/metabolismo , Ratas
19.
Muscle Nerve ; 45(3): 385-92, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22334173

RESUMEN

INTRODUCTION: Although nerves can spontaneously regenerate in the peripheral nervous system without treatment, functional recovery is generally poor, and thus there is a need for strategies to improve nerve regeneration. METHODS: The left sciatic nerve of adult rats was transected and immediately repaired by epineurial sutures. Rats were then assigned to one of two experimental groups treated with either growth hormone (GH) or saline for 8 weeks. Sciatic nerve regeneration was estimated by histological evaluation, nerve conduction tests, and rotarod and treadmill performance. RESULTS: GH-treated rats showed increased cellularity at the lesion site together with more abundant immunoreactive axons and Schwann cells. Compound muscle action potential (CMAP) amplitude was also higher in these animals, and CMAP latency was significantly lower. Treadmill performance increased in rats receiving GH. CONCLUSION: GH enhanced the functional recovery of the damaged nerves, thus supporting the use of GH treatment, alone or combined with other therapeutic approaches, in promoting nerve repair.


Asunto(s)
Hormona del Crecimiento/farmacología , Hormona del Crecimiento/uso terapéutico , Actividad Motora/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Neuropatía Ciática , Cicatrización de Heridas/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Electromiografía , Prueba de Esfuerzo , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiopatología , Proteínas de Neurofilamentos/metabolismo , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos , Prueba de Desempeño de Rotación con Aceleración Constante , Proteínas S100/metabolismo , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Nervio Ciático/efectos de los fármacos , Nervio Ciático/metabolismo , Nervio Ciático/patología , Neuropatía Ciática/tratamiento farmacológico , Neuropatía Ciática/fisiopatología , Neuropatía Ciática/cirugía , Estadísticas no Paramétricas
20.
Brain Inj ; 25(5): 503-10, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21456999

RESUMEN

PRIMARY OBJECTIVE: This study was designed to investigate the effect of growth hormone treatment on the proliferation of endogenous neural progenitor cells in the dentate gyrus (DG) of the brain stimulated by kainic acid (KA)-induced neurotoxicity. RESEARCH DESIGN: Neurotoxicity was induced by intraperitoneal injection of KA. GH treatment lasted 4 days, starting either immediately or after 10 days of administration of the neurotoxic insult. METHODS AND PROCEDURE: Proliferating cells were immunodetected after labelling by in vivo administration of 5-bromodeoxyuridine (BrdU). GH expression was detected by in situ hybridization and immunofluorescence. MAIN OUTCOMES AND RESULTS: KA administration stimulated the proliferation of hippocampal precursors and this effect was significantly enhanced by GH treatment. Hippocampal GH expression was also up-regulated in response to KA administration. CONCLUSIONS: The findings support the possibility that the proliferative response observed in the hippocampus of rats treated with KA and GH is a consequence of cooperation between the exogenous and the locally-produced hormone and their synergism with other mitogenic factors generated in response to the neurotoxic damage. Therefore, GH treatment could be used to cooperate with other physiological or pathological stimuli in order to promote cell proliferation.


Asunto(s)
Giro Dentado/efectos de los fármacos , Hormona del Crecimiento/metabolismo , Células Madre/efectos de los fármacos , Animales , Proliferación Celular , Giro Dentado/citología , Giro Dentado/metabolismo , Agonistas de Aminoácidos Excitadores , Ácido Kaínico , Masculino , Ratas , Ratas Sprague-Dawley , Células Madre/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...