Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Transplant ; 15(8-9): 711-21, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17269442

RESUMEN

Mesenchymal stem cells (MSCs) express low immunogenicity and demonstrate immunomodulatory properties in vitro that may safely allow their transplantation into unrelated immunocompetent recipients without the use of pharmacologic immunosuppression. To test this hypothesis, three groups of baboons (three animals per group) were injected as follows: group 1 animals were injected with vehicle; group 2 animals were injected IV with DiI-labeled MSCs (5 x 106 MSCs/kg body weight) followed 6 weeks later by IM injections of DiO-labeled MSCs (5 x 10(6) MSCs/kg) from the same donor; and group 3 animals were treated similarly as group 2 except that MSCs were derived from two different donors. Muscle biopsies, performed 4 weeks after the second injection of MSCs, showed persistence of DiO-labeled MSCs in 50% of the recipients. Blood was drawn at intervals for evaluation of basic immune parameters (Con A mitogen responsiveness, PBMC phenotyping, immunoglobulin levels), and to determine T-cell and alloantibody responses to donor alloantigens. Host T-cell responses to donor alloantigens were decreased in the majority of recipients without suppressing the overall T-cell response to Con A, or affecting basic parameters of the immune system. All recipient baboons produced alloantibodies that reacted with donor PBMCs. Two of six animals produced alloantibodies that reacted with MSCs. We conclude that multiple administrations of high doses of allogeneic MSCs affected alloreactive immune responses without compromising the overall immune system of recipient baboons. The induction of host T-cell hyporesponsiveness to donor alloantigens may facilitate MSC survival.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/inmunología , Animales , Femenino , Isoantígenos/inmunología , Masculino , Células Madre Mesenquimatosas/citología , Papio , Linfocitos T/inmunología , Factores de Tiempo , Tolerancia al Trasplante/inmunología , Trasplante Homólogo
2.
J Bone Joint Surg Am ; 85(10): 1927-35, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14563800

RESUMEN

BACKGROUND: Mesenchymal stem cells from adult bone marrow are multipotent cells capable of forming bone, cartilage, and other connective tissues. In a previous study, we demonstrated that autologous mesenchymal stem cells could repair a critical-sized bone defect in the dog. The objective of this study was to determine whether the use of allogeneic mesenchymal stem cells could heal a critical-sized bone defect in the femoral diaphysis in dogs without the use of immunosuppressive therapy. METHODS: A critical-sized segmental bone defect, 21 mm in length, was created in the mid-portion of the femoral diaphysis of twelve adult dogs that weighed between 22 and 25 kg. Each defect was treated with allogeneic mesenchymal stem cells loaded onto a hollow ceramic cylinder consisting of hydroxyapatite-tricalcium phosphate. A complete mismatch between donor stem cells and recipient dogs was identified by dog leukocyte antigen typing prior to implantation. The healing response was evaluated histologically and radiographically at four, eight, and sixteen weeks after implantation. The radiographic and histological results at sixteen weeks were compared with the historical data for the control defects, which included defects that had been treated with a cylinder loaded with autologous mesenchymal stem cells, defects treated with a cylinder without mesenchymal stem cells, and defects that had been left untreated (empty). The systemic immune response was evaluated by the analysis of recipient serum for production of antibodies against allogeneic cells. RESULTS: For defects treated with allogeneic mesenchymal stem cell implants, no adverse host response could be detected at any time-point. Histologically, no lymphocytic infiltration occurred and no antibodies against allogeneic cells were detected. Histologically, by eight weeks, a callus spanned the length of the defect, and lamellar bone filled the pores of the implant at the host bone-implant interface. Fluorescently labeled allogeneic cells were also detected. At sixteen weeks, new bone had formed throughout the implant. These results were consistent with those seen in implants loaded with autologous cells. Implants loaded with allogeneic or autologous stem cells had significantly greater amounts of bone within the available pore space than did cell-free implants at sixteen weeks (p < 0.05). CONCLUSIONS: The results of this study demonstrated that allogeneic mesenchymal stem cells loaded on hydroxyapatite-tricalcium phosphate implants enhanced the repair of a critical-sized segmental defect in the canine femur without the use of immunosuppressive therapy. No adverse immune response was detected in this model.


Asunto(s)
Enfermedades Óseas/cirugía , Regeneración Ósea , Fémur/cirugía , Mesodermo/citología , Trasplante de Células Madre , Animales , Enfermedades Óseas/diagnóstico por imagen , Enfermedades Óseas/patología , Diáfisis/diagnóstico por imagen , Diáfisis/cirugía , Diáfisis/ultraestructura , Modelos Animales de Enfermedad , Perros , Fémur/diagnóstico por imagen , Fémur/ultraestructura , Mesodermo/diagnóstico por imagen , Radiografía , Trasplante Homólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA