Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 6721, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795302

RESUMEN

Structural Maintenance of Chromosomes (SMC) complexes act ubiquitously to compact DNA linearly, thereby facilitating chromosome organization-segregation. SMC proteins have a conserved architecture, with a dimerization hinge and an ATPase head domain separated by a long antiparallel intramolecular coiled-coil. Dimeric SMC proteins interact with essential accessory proteins, kleisins that bridge the two subunits of an SMC dimer, and HAWK/KITE proteins that interact with kleisins. The ATPase activity of the Escherichia coli SMC protein, MukB, which is essential for its in vivo function, requires its interaction with the dimeric kleisin, MukF that in turn interacts with the KITE protein, MukE. Here we demonstrate that, in addition, MukB interacts specifically with Acyl Carrier Protein (AcpP) that has essential functions in fatty acid synthesis. We characterize the AcpP interaction at the joint of the MukB coiled-coil and show that the interaction is necessary for MukB ATPase and for MukBEF function in vivo.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Cromosomas Bacterianos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Represoras/metabolismo , Proteína Transportadora de Acilo/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Cromosómicas no Histona/genética , Cromosomas Bacterianos/genética , Activación Enzimática , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutación , Unión Proteica , Proteínas Represoras/genética
2.
Elife ; 102021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34585666

RESUMEN

Structural Maintenance of Chromosomes (SMC) complexes have ubiquitous roles in compacting DNA linearly, thereby promoting chromosome organization-segregation. Interaction between the Escherichia coli SMC complex, MukBEF, and matS-bound MatP in the chromosome replication termination region, ter, results in depletion of MukBEF from ter, a process essential for efficient daughter chromosome individualization and for preferential association of MukBEF with the replication origin region. Chromosome-associated MukBEF complexes also interact with topoisomerase IV (ParC2E2), so that their chromosome distribution mirrors that of MukBEF. We demonstrate that MatP and ParC have an overlapping binding interface on the MukB hinge, leading to their mutually exclusive binding, which occurs with the same dimer to dimer stoichiometry. Furthermore, we show that matS DNA competes with the MukB hinge for MatP binding. Cells expressing MukBEF complexes that are mutated at the ParC/MatP binding interface are impaired in ParC binding and have a mild defect in MukBEF function. These data highlight competitive binding as a means of globally regulating MukBEF-topoisomerase IV activity in space and time.


Asunto(s)
Unión Competitiva , Proteínas Cromosómicas no Histona/química , Topoisomerasa de ADN IV/química , Proteínas de Escherichia coli/química , Escherichia coli/química
3.
Nucleic Acids Res ; 47(18): 9696-9707, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31400115

RESUMEN

Ubiquitous Structural Maintenance of Chromosomes (SMC) complexes use a proteinaceous ring-shaped architecture to organize and individualize chromosomes, thereby facilitating chromosome segregation. They utilize cycles of adenosine triphosphate (ATP) binding and hydrolysis to transport themselves rapidly with respect to DNA, a process requiring protein conformational changes and multiple DNA contact sites. By analysing changes in the architecture and stoichiometry of the Escherichia coli SMC complex, MukBEF, as a function of nucleotide binding to MukB and subsequent ATP hydrolysis, we demonstrate directly the formation of dimer of MukBEF dimer complexes, dependent on dimeric MukF kleisin. Using truncated and full length MukB, in combination with MukEF, we show that engagement of the MukB ATPase heads on nucleotide binding directs the formation of dimers of heads-engaged dimer complexes. Complex formation requires functional interactions between the C- and N-terminal domains of MukF with the MukB head and neck, respectively, and MukE, which organizes the complexes by stabilizing binding of MukB heads to MukF. In the absence of head engagement, a MukF dimer bound by MukE forms complexes containing only a dimer of MukB. Finally, we demonstrate that cells expressing MukBEF complexes in which MukF is monomeric are Muk-, with the complexes failing to associate with chromosomes.


Asunto(s)
Proteínas Cromosómicas no Histona/química , Proteínas de Escherichia coli/genética , Proteínas Represoras/genética , Proteínas Cromosómicas no Histona/genética , Cromosomas/química , Cromosomas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Unión Proteica , Proteínas Represoras/química
4.
Elife ; 72018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323635

RESUMEN

The Escherichia coli SMC complex, MukBEF, acts in chromosome segregation. MukBEF shares the distinctive architecture of other SMC complexes, with one prominent difference; unlike other kleisins, MukF forms dimers through its N-terminal domain. We show that a 4-helix bundle adjacent to the MukF dimerisation domain interacts functionally with the MukB coiled-coiled 'neck' adjacent to the ATPase head. We propose that this interaction leads to an asymmetric tripartite complex, as in other SMC complexes. Since MukF dimerisation is preserved during this interaction, MukF directs the formation of dimer of dimer MukBEF complexes, observed previously in vivo. The MukF N- and C-terminal domains stimulate MukB ATPase independently and additively. We demonstrate that impairment of the MukF interaction with MukB in vivo leads to ATP hydrolysis-dependent release of MukBEF complexes from chromosomes.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica , Escherichia coli/metabolismo , Unión Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas , Multimerización de Proteína
5.
Sci Rep ; 6: 33357, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27708355

RESUMEN

Bacterial chromosomes are most often circular DNA molecules. This can produce a topological problem; a genetic crossover from homologous recombination results in dimerization of the chromosome. A chromosome dimer is lethal unless resolved. A site-specific recombination system catalyses this dimer-resolution reaction at the chromosomal site dif. In Escherichia coli, two tyrosine-family recombinases, XerC and XerD, bind to dif and carry out two pairs of sequential strand exchange reactions. However, what makes the reaction unique among site-specific recombination reactions is that the first step, XerD-mediated strand exchange, relies on interaction with the very C-terminus of the FtsK DNA translocase. FtsK is a powerful molecular motor that functions in cell division, co-ordinating division with clearing chromosomal DNA from the site of septation and also acts to position the dif sites for recombination. This is a model system for unlinking, separating and segregating large DNA molecules. Here we describe the molecular detail of the interaction between XerD and FtsK that leads to activation of recombination as deduced from a co-crystal structure, biochemical and in vivo experiments. FtsKγ interacts with the C-terminal domain of XerD, above a cleft where XerC is thought to bind. We present a model for activation of recombination based on structural data.


Asunto(s)
Proteínas de Escherichia coli/genética , Integrasas/genética , Proteínas de la Membrana/genética , Recombinación Genética , Secuencia de Bases/genética , Cromosomas Bacterianos/genética , Escherichia coli
6.
Proc Natl Acad Sci U S A ; 112(37): E5133-41, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26324908

RESUMEN

The FtsK dsDNA translocase functions in bacterial chromosome unlinking by activating XerCD-dif recombination in the replication terminus region. To analyze FtsK assembly and translocation, and the subsequent activation of XerCD-dif recombination, we extended the tethered fluorophore motion technique, using two spectrally distinct fluorophores to monitor two effective lengths along the same tethered DNA molecule. We observed that FtsK assembled stepwise on DNA into a single hexamer, and began translocation rapidly (∼ 0.25 s). Without extruding DNA loops, single FtsK hexamers approached XerCD-dif and resided there for ∼ 0.5 s irrespective of whether XerCD-dif was synapsed or unsynapsed. FtsK then dissociated, rather than reversing. Infrequently, FtsK activated XerCD-dif recombination when it encountered a preformed synaptic complex, and dissociated before the completion of recombination, consistent with each FtsK-XerCD-dif encounter activating only one round of recombination.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Integrasas/metabolismo , Proteínas de la Membrana/metabolismo , Adenosina Trifosfato/química , Secuencia de Bases , Cromosomas Bacterianos/metabolismo , ADN/química , Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Funciones de Verosimilitud , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Distribución Normal , Unión Proteica , Transporte de Proteínas , Recombinación Genética
7.
Mol Cell ; 54(5): 832-43, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24768536

RESUMEN

In physiological settings, DNA translocases will encounter DNA-bound proteins, which must be dislodged or bypassed to allow continued translocation. FtsK is a bacterial translocase that promotes chromosome dimer resolution and decatenation by activating XerCD-dif recombination. To better understand how translocases act in crowded environments, we used single-molecule imaging to visualize FtsK in real time as it collided with other proteins. We show that FtsK can push, evict, and even bypass DNA-bound proteins. The primary factor dictating the outcome of collisions was the relative affinity of the proteins for their specific binding sites. Importantly, protein-protein interactions between FtsK and XerD help prevent removal of XerCD from DNA by promoting rapid reversal of FtsK. Finally, we demonstrate that RecBCD always overwhelms FtsK when these two motor proteins collide while traveling along the same DNA molecule, indicating that RecBCD is capable of exerting a much greater force than FtsK when translocating along DNA.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/genética , Proteínas de la Membrana/química , Bacteriófago lambda/genética , Sitios de Unión , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Viral/química , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Transporte de Proteínas
8.
Proc Natl Acad Sci U S A ; 110(43): 17302-7, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24101525

RESUMEN

Three single-molecule techniques have been used simultaneously and in tandem to track the formation in vitro of single XerCD-dif recombination complexes. We observed the arrival of the FtsK translocase at individual preformed synaptic complexes and demonstrated the conformational change that occurs during their activation. We then followed the reaction intermediate transitions as Holliday junctions formed through catalysis by XerD, isomerized, and were converted by XerC to reaction products, which then dissociated. These observations, along with the calculated intermediate lifetimes, inform the reaction mechanism, which plays a key role in chromosome unlinking in most bacteria with circular chromosomes.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Integrasas/metabolismo , Proteínas de la Membrana/metabolismo , Recombinación Genética , Algoritmos , Secuencia de Bases , Biocatálisis , Emparejamiento Cromosómico , Cromosomas Bacterianos/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Cruciforme/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , Integrasas/química , Integrasas/genética , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Microscopía Fluorescente/métodos , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Conformación Proteica , Especificidad por Sustrato
9.
Proc Natl Acad Sci U S A ; 109(51): 20871-6, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23184986

RESUMEN

Site-specific recombination plays key roles in microbe biology and is exploited extensively to manipulate the genomes of higher organisms. Cre is a well studied site-specific recombinase, responsible for establishment and maintenance of the P1 bacteriophage genome in bacteria. During recombination, Cre forms a synaptic complex between two 34-bp DNA sequences called loxP after which a pair of strand exchanges forms a Holliday junction (HJ) intermediate; HJ isomerization then allows a second pair of strand exchanges and thus formation of the final recombinant product. Despite extensive work on the Cre-loxP system, many of its mechanisms have remained unclear, mainly due to the transient nature of complexes formed and the ensemble averaging inherent to most biochemical work. Here, we address these limitations by introducing tethered fluorophore motion (TFM), a method that monitors large-scale DNA motions through reports of the diffusional freedom of a single fluorophore. We combine TFM with Förster resonance energy transfer (FRET) and simultaneously observe both large- and small-scale conformational changes within single DNA molecules. Using TFM-FRET, we observed individual recombination reactions in real time and analyzed their kinetics. Recombination was initiated predominantly by exchange of the "bottom-strands" of the DNA substrate. In productive complexes we used FRET distributions to infer rapid isomerization of the HJ intermediates and that a rate-limiting step occurs after this isomerization. We also observed two nonproductive synaptic complexes, one of which was structurally distinct from conformations in crystals. After recombination, the product synaptic complex was extremely stable and refractory to subsequent rounds of recombination.


Asunto(s)
Bioquímica/métodos , Fluorescencia , Integrasas/metabolismo , Sitios de Unión , ADN/química , ADN Nucleotidiltransferasas/genética , ADN Cruciforme , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Cinética , Modelos Químicos , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Recombinación Genética
10.
Biochem Soc Trans ; 38(2): 395-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20298190

RESUMEN

Escherichia coli FtsK is a septum-located DNA translocase that co-ordinates the late stages of cytokinesis and chromosome segregation. Relatives of FtsK are present in most bacteria; in Bacillus subtilis, the FtsK orthologue, SpoIIIE, transfers the majority of a chromosome into the forespore during sporulation. DNA translocase activity is contained within a ~ 512-amino-acid C-terminal domain, which is divided into three subdomains: alpha, beta and gamma. alpha and beta comprise the translocation motor, and gamma is a regulatory domain that interacts with DNA and with the XerD recombinase. In vitro rates of translocation of ~ 5 kb.s(-1) have been measured for both FtsK and SpoIIIE, whereas, in vivo, SpoIIIE has a comparable rate of translocation. Translocation by both of these proteins is not only rapid, but also directed by DNA sequence. This directionality requires interaction of the gamma subdomain with specific 8 bp DNA asymmetric sequences that are oriented co-directionally with replication direction of the bacterial chromosome. The gamma subdomain also interacts with the XerCD site-specific recombinase to activate chromosome unlinking by recombination at the chromosomal dif site. In the present paper, the properties in vivo and in vitro of FtsK and its relatives are discussed in relation to the biological functions of these remarkable enzymes.


Asunto(s)
ADN Nucleotidiltransferasas/fisiología , Proteínas de Escherichia coli/fisiología , Escherichia coli/enzimología , Proteínas de la Membrana/fisiología , Segregación Cromosómica/genética , Citocinesis/genética , ADN Nucleotidiltransferasas/metabolismo , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Conformación Proteica , Homología de Secuencia
11.
Nucleic Acids Res ; 38(1): 72-81, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19854947

RESUMEN

Escherichia coli FtsK is a powerful, fast, double-stranded DNA translocase, which can strip proteins from DNA. FtsK acts in the late stages of chromosome segregation by facilitating sister chromosome unlinking at the division septum. KOPS-guided DNA translocation directs FtsK towards dif, located within the replication terminus region, ter, where FtsK activates XerCD site-specific recombination. Here we show that FtsK translocation stops specifically at XerCD-dif, thereby preventing removal of XerCD from dif and allowing activation of chromosome unlinking by recombination. Stoppage of translocation at XerCD-dif is accompanied by a reduction in FtsK ATPase and is not associated with FtsK dissociation from DNA. Specific stoppage at recombinase-DNA complexes does not require the FtsKgamma regulatory subdomain, which interacts with XerD, and is not dependent on either recombinase-mediated DNA cleavage activity, or the formation of synaptic complexes.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Integrasas/metabolismo , Proteínas de la Membrana/metabolismo , Recombinación Genética , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , ADN/metabolismo , División del ADN , Proteínas de Escherichia coli/química , Proteínas de la Membrana/química , Estructura Terciaria de Proteína , Transporte de Proteínas
12.
Mol Microbiol ; 71(4): 1031-42, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19170870

RESUMEN

The septum-located DNA translocase, FtsK, acts to co-ordinate the late steps of Escherichia coli chromosome segregation with cell division. The FtsK gamma regulatory subdomain interacts with 8 bp KOPS DNA sequences, which are oriented from the replication origin to the terminus region (ter) in each arm of the chromosome. This interaction directs FtsK translocation towards ter where the final chromosome unlinking by decatenation and chromosome dimer resolution occurs. Chromosome dimer resolution requires FtsK translocation along DNA and its interaction with the XerCD recombinase bound to the recombination site, dif, located within ter. The frequency of chromosome dimer formation is approximately 15% per generation in wild-type cells. Here we characterize FtsK alleles that no longer recognize KOPS, yet are proficient for translocation and chromosome dimer resolution. Non-directed FtsK translocation leads to a small reduction in fitness in otherwise normal cell populations, as a consequence of approximately 70% of chromosome dimers being resolved to monomers. More serious consequences arise when chromosome dimer formation is increased, or their resolution efficiency is impaired because of defects in chromosome organization and processing. For example, when Cre-loxP recombination replaces XerCD-dif recombination in dimer resolution, when functional MukBEF is absent, or when replication terminates away from ter.


Asunto(s)
Segregación Cromosómica , Replicación del ADN , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de la Membrana/metabolismo , División Celular , Cromosomas Bacterianos/genética , ADN Bacteriano/metabolismo , Dimerización , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/genética
13.
Nat Struct Mol Biol ; 13(11): 965-72, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17057717

RESUMEN

The bacterial septum-located DNA translocase FtsK coordinates circular chromosome segregation with cell division. Rapid translocation of DNA by FtsK is directed by 8-base-pair DNA motifs (KOPS), so that newly replicated termini are brought together at the developing septum, thereby facilitating completion of chromosome segregation. Translocase functions reside in three domains, alpha, beta and gamma. FtsKalphabeta are necessary and sufficient for ATP hydrolysis-dependent DNA translocation, which is modulated by FtsKgamma through its interaction with KOPS. By solving the FtsKgamma structure by NMR, we show that gamma is a winged-helix domain. NMR chemical shift mapping localizes the DNA-binding site on the gamma domain. Mutated proteins with substitutions in the FtsKgamma DNA-recognition helix are impaired in DNA binding and KOPS recognition, yet remain competent in DNA translocation and XerCD-dif site-specific recombination, which facilitates the late stages of chromosome segregation.


Asunto(s)
ADN Helicasas/química , ADN Helicasas/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Pseudomonas aeruginosa/química , Secuencia de Bases , Sitios de Unión , Cromosomas Bacterianos/metabolismo , Replicación del ADN , ADN Bacteriano/química , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/enzimología
14.
Mol Microbiol ; 59(6): 1754-66, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16553881

RESUMEN

Successful bacterial circular chromosome segregation requires that any dimeric chromosomes, which arise by crossing over during homologous recombination, are converted to monomers. Resolution of dimers to monomers requires the action of the XerCD site-specific recombinase at dif in the chromosome replication terminus region. This reaction requires the DNA translocase, FtsK(C), which activates dimer resolution by catalysing an ATP hydrolysis-dependent switch in the catalytic state of the nucleoprotein recombination complex. We show that a 62-amino-acid fragment of FtsK(C) interacts directly with the XerD C-terminus in order to stimulate the cleavage by XerD of BSN, a dif-DNA suicide substrate containing a nick in the 'bottom' strand. The resulting recombinase-DNA covalent complex can undergo strand exchange with intact duplex dif in the absence of ATP. FtsK(C)-mediated stimulation of BSN cleavage by XerD requires synaptic complex formation. Mutational impairment of the XerD-FtsK(C) interaction leads to reduction in the in vitro stimulation of BSN cleavage by XerD and a concomitant deficiency in the resolution of chromosomal dimers at dif in vivo, although other XerD functions are not affected.


Asunto(s)
Proteínas Bacterianas/química , Segregación Cromosómica , Proteínas de Escherichia coli/química , Integrasas/química , Proteínas de la Membrana/química , Mapeo de Interacción de Proteínas , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Haemophilus influenzae/enzimología , Haemophilus influenzae/genética , Integrasas/genética , Integrasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Recombinación Genética
15.
J Mol Biol ; 330(1): 15-27, 2003 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-12818199

RESUMEN

The tyrosine family site-specific recombinases XerC and XerD convert dimers of the Escherichia coli chromosome and many natural plasmids to monomers. The heterotetrameric recombination complex contains two molecules of XerC and two of XerD, with each recombinase mediating one pair of DNA strand exchanges. The two pairs of strand exchanges are separated in time and space. This demands that the catalytic activity of the four recombinase molecules be controlled so that only XerC or XerD is active at any given time, there being a switch in the recombinase activity state at the Holliday junction intermediate stage. Here, we analyse chimeras and deletion variants within the recombinase C-terminal domains in order to probe determinants that may be specific to either XerC or XerD, and to further understand how XerC-XerD interactions control catalysis in a recombining heterotetramer. The data confirm that the C-terminal "end" region of each recombinase plays an important role in coordinating catalysis within the XerCD heterotetramer and suggest that the interactions between the end regions of XerC and XerD and their cognate receptors within the partner recombinase are structurally and functionally different. The results support the hypothesis that the "normal" state in the heterotetrameric complex, in which XerC is catalytically active and XerD is inactive, depends on the interactions between the C-terminal end region of XerC and its receptor region within the C-terminal domain of XerD; interference with these interactions leads to a switch in the catalytic state, so that XerD is now preferentially active.


Asunto(s)
ADN Nucleotidiltransferasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Integrasas , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , ADN/síntesis química , ADN/química , ADN/metabolismo , ADN Nucleotidiltransferasas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Sustancias Macromoleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína/fisiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinasas , Recombinación Genética , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA