Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 11: 1363097, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601116

RESUMEN

Preterm birth, defined as birth before the gestational age of 37 weeks, affects 11% of the newborns worldwide. While extensive research has focused on the immediate complications associated with prematurity, emerging evidence suggests a link between prematurity and the development of kidney disease later in life. It has been demonstrated that the normal course of kidney development is interrupted in infants born prematurely, causing an overall decrease in functional nephrons. Yet, the pathogenesis leading to the alterations in kidney development and the subsequent pathophysiological consequences causing kidney disease on the long-term are incompletely understood. In the present review, we discuss the current knowledge on nephrogenesis and how this process is affected in prematurity. We further discuss the epidemiological evidence and experimental data demonstrating the increased risk of kidney disease in these individuals and highlight important knowledge gaps. Importantly, understanding the intricate interplay between prematurity, abnormal kidney development, and the long-term risk of kidney disease is crucial for implementing effective preventive and therapeutic strategies.

2.
Res Sq ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464119

RESUMEN

Background: Personalized disease models are crucial for assessing the specific response of diseased cells to drugs, particularly novel biological therapeutics. Extracellular vesicles (EVs), nanosized vesicles released by cells for intercellular communication, have gained therapeutic interest due to their ability to reprogram target cells. We here utilized urinary podocytes obtained from children affected by steroid-resistant nephrotic syndrome with characterized genetic mutations as a model to test the therapeutic potential of EVs derived from kidney progenitor cells. Methods: EVs were isolated from kidney progenitor cells (nKPCs) derived from the urine of a preterm neonate. Three lines of urinary podocytes obtained from nephrotic patients' urine and a line of Alport patient podocytes were characterized and used to assess albumin permeability in response to various drugs or to nKPC-EVs. RNA sequencing was conducted to identify commonly modulated pathways. Results: Podocytes appeared unresponsive to pharmacological treatments, except for a podocyte line demonstrating responsiveness, in alignment with the patient's clinical response at 48 months. At variance, treatment with the nKPC-EVs was able to significantly reduce permeability in all the steroid-resistant patients-derived podocytes as well as in the line of Alport-derived podocytes. RNA sequencing of nKPC-EV-treated podocytes revealed the common upregulation of two genes (small ubiquitin-related modifier 1 (SUMO1) and Sentrin-specific protease 2 (SENP2)) involved in the SUMOylation pathway, a process recently demonstrated to play a role in slit diaphragm stabilization. Gene ontology analysis on podocyte expression profile highlighted cell-to-cell adhesion as the primary upregulated biological activity in treated podocytes. Conclusions: nKPCs emerge as a promising non-invasive source of EVs with potential therapeutic effects on podocyte dysfunction. Furthermore, our findings suggest the possibility of establishing a non-invasive in vitro model for screening regenerative compounds on patient-derived podocytes.

3.
Pediatr Nephrol ; 39(2): 383-395, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37400705

RESUMEN

The endogenous capacity of the kidney to repair is limited, and generation of new nephrons after injury for adequate function recovery remains a need. Discovery of factors that promote the endogenous regenerative capacity of the injured kidney or generation of transplantable kidney tissue represent promising therapeutic strategies. While several encouraging results are obtained after administration of stem or progenitor cells, stem cell secretome, or extracellular vesicles in experimental kidney injury models, very little data exist in the clinical setting to make conclusions about their efficacy. In this review, we provide an overview of the cutting-edge knowledge on kidney regeneration, including pre-clinical methodologies used to elucidate regenerative pathways and describe the perspectives of regenerative medicine for kidney patients.


Asunto(s)
Riñón , Nefrología , Niño , Humanos , Medicina Regenerativa/métodos , Regeneración , Células Madre/metabolismo
4.
Sci Rep ; 13(1): 20961, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38016974

RESUMEN

Messenger RNA (mRNA) therapies are emerging in different disease areas, but have not yet reached the kidney field. Our aim was to study the feasibility to treat the genetic defect in cystinosis using synthetic mRNA in cell models and ctns-/- zebrafish embryos. Cystinosis is a prototype lysosomal storage disorder caused by mutations in the CTNS gene, encoding the lysosomal cystine-H+ symporter cystinosin, and leading to cystine accumulation in all cells of the body. The kidneys are the first and the most severely affected organs, presenting glomerular and proximal tubular dysfunction, progressing to end-stage kidney failure. The current therapeutic standard cysteamine, reduces cystine levels, but has many side effects and does not restore kidney function. Here, we show that synthetic mRNA can restore lysosomal cystinosin expression following lipofection into CTNS-/- kidney cells and injection into ctns-/- zebrafish. A single CTNS mRNA administration decreases cellular cystine accumulation for up to 14 days in vitro. In the ctns-/- zebrafish, CTNS mRNA therapy improves proximal tubular reabsorption, reduces proteinuria, and restores brush border expression of the multi-ligand receptor megalin. Therefore, this proof-of-principle study takes the first steps in establishing an mRNA-based therapy to restore cystinosin expression, resulting in cystine reduction in vitro and in the ctns-/- larvae, and restoration of the zebrafish pronephros function.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Animales , Cistinosis/genética , Cistinosis/terapia , Cistina/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , ARN Mensajero/genética , ARN Mensajero/uso terapéutico , Modelos Teóricos , Suplementos Dietéticos , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo
5.
Am J Transplant ; 22(12): 2791-2803, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35913414

RESUMEN

During development, nephron structures are derived from a SIX2+ stem cell population. After 36 weeks of gestation, these cells are exhausted, and no new nephrons are formed. We have previously described a non-invasive strategy to isolate and expand the native SIX2+ kidney stem cells from the urine of preterm neonates, named neonatal kidney stem/progenitor cells (nKSPC). Here, we investigated the safety and feasibility of administering nKSPC into human kidneys discarded for transplantation during normothermic machine perfusion (NMP) and evaluated the regenerative and immunomodulatory potential of nKSPC treatment. We found that nKSPC administration during NMP is safe and feasible. Interestingly, nKSPC induced the de novo expression of SIX2 in proximal tubular cells of the donor kidneys and upregulated regenerative markers such as SOX9 and VEGF. This is the first time that SIX2 re-expression is observed in adult human kidneys. Moreover, nKSPC administration significantly lowered levels of kidney injury biomarkers and reduced inflammatory cytokine levels via the tryptophan-IDO-kynurenine pathway. In conclusion, nKSPC is a novel cell type to be applied in kidney-targeted cell therapy, with the potential to induce an endogenous regenerative process and immunomodulation.


Asunto(s)
Proteínas de Homeodominio , Riñón , Recién Nacido , Humanos , Riñón/metabolismo , Nefronas , Células Madre/metabolismo , Perfusión , Proteínas del Tejido Nervioso/metabolismo
6.
Matrix Biol ; 68-69: 44-66, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29574063

RESUMEN

Connective tissue growth factor, also known as CCN2, is a cysteine-rich matricellular protein involved in the control of biological processes, such as cell proliferation, differentiation, adhesion and angiogenesis, as well as multiple pathologies, such as tumor development and tissue fibrosis. Here, we describe the molecular and biological characteristics of CTGF, its regulation and various functions in the spectrum of development and regeneration to fibrosis. We further outline the preclinical and clinical studies concerning compounds targeting CTGF in various pathologies with the focus on heart, lung, liver, kidney and solid organ transplantation. Finally, we address the advances and pitfalls of translational fibrosis research and provide suggestions to move towards a better management of fibrosis.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/química , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Cicatrización de Heridas , Biomarcadores/metabolismo , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Factor de Crecimiento del Tejido Conjuntivo/genética , Fibrosis , Regulación de la Expresión Génica , Humanos , Neoplasias/metabolismo , Investigación Biomédica Traslacional
7.
Curr Pharm Des ; 23(38): 5911-5918, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28990525

RESUMEN

BACKGROUND: Finding the right drug-dosage for neonates is still a challenge. Until now, neonatal doses are extrapolated from adults and children doses. However, there are differences between neonatal and adult kidney physiology that should be considered, especially when it comes to drug metabolism and/or transport. Studying renal drug disposition in neonates is limited by the lack of reliable human cell models. OBJECTIVE: To illustrate the feasibility of developing an in vitro model for neonatal proximal tubule epithelial cells (nPTECs) to study renal drug disposition at this age. METHOD: nPTECs were isolated from urine samples of neonates of different gestational ages and were conditionally immortalized using a temperature sensitive SV40T antigen and human telomerase hTERT. Cell clones were characterized on gene expression level for PTEC markers such as P-glycoprotein (ABCB1), aquaporin1 (AQP1), and organic cation transport protein 2 (SLC22A2), and for kidney progenitor cell and podocyte markers. In addition, protein expression and functional assessment were performed for P-gp and OCT2. RESULTS: We established 101 clonal cell lines of conditionally immortalized nPTECs derived from neonatal urines. Characterization of primary cells lines showed expression of genes from different cell types such as progenitors, PTECs and podocytes, however the developed conditionally immortalized nPTECs only expressed proximal tubule markers. Quantitative PCR analysis confirmed the expression of proximal tubule markers in nPTECs similar to the adult control PTECs. P-gp was expressed in nPTECs derived from the different gestational ages with a similar functionality compared with adult derived PTECs. In contrast, OCT2 functionality was significantly lower in nPTEC cell lines compared with adult PTECs. CONCLUSION: We demonstrate the feasibility of culturing proximal tubule epithelial cells with high efficiency from urine of neonates. These cells expressed PTEC-specific genes and functional drug transporters. The cell model presented is a valuable tool to study proximal tubule physiology and pharmacology in newborns. In addition, we demonstrate the physiological differences between the neonatal and adult kidney, which emphasizes the importance of studying drug disposition in neonatal models instead of extrapolating from adult data.


Asunto(s)
Ciclosporinas/metabolismo , Resistencia a Múltiples Medicamentos/fisiología , Células Epiteliales/metabolismo , Túbulos Renales Proximales/metabolismo , Línea Celular Transformada , Células Cultivadas , Ciclosporinas/farmacología , Relación Dosis-Respuesta a Droga , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Humanos , Recién Nacido , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Distribución Tisular
8.
Crit Care Med ; 45(1): e86-e96, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27548820

RESUMEN

OBJECTIVE: To evaluate if the up-regulation of vascular endothelial growth factor strengthens the protective effect of amniotic fluid stem cells in a renal ischemia-reperfusion injury model. DESIGN: Randomized animal study. SETTINGS: University research laboratory. SUBJECTS: A total of 40 males 12-week-old Wistar rats were subjected to ischemia-reperfusion and assigned to four groups: amniotic fluid stem cells, vascular endothelial growth factor-amniotic fluid stem cells in two different doses, and vehicle. Ten animals were used as sham-controls. INTERVENTION: Six hours after induction of renal ischemia-reperfusion injury, amniotic fluid stem cells, vascular endothelial growth factor-amniotic fluid stem cells in two different doses, or vehicle were injected intraarterially. MEASUREMENTS AND MAIN RESULTS: Analyses were performed at 24 hours, 48 hours, and 2 months after treatment. Outcome measures included serum creatinine, urine microprotenuira, and immunohistomorphometric analyses. Vascular endothelial growth factor-amniotic fluid stem cells induced a significantly higher nephroprotection than amniotic fluid stem cells. This effect was mediated mainly by immunomodulation, which led to lower macrophage infiltration and higher presence of regulatory T cell after ischemia-reperfusion injury. At medium term, it inhibited the progression toward chronic kidney disease. Vascular endothelial growth factor-amniotic fluid stem cells can worsen the ischemia-reperfusion injury when delivered in a high dose. CONCLUSIONS: Up-regulation of vascular endothelial growth factor enhances the therapeutic effect of human amniotic fluid stem cells in rats with renal ischemia-reperfusion injury, mainly by mitogenic, angiogenic, and anti-inflammatory mechanisms.


Asunto(s)
Lesión Renal Aguda/terapia , Líquido Amniótico/citología , Daño por Reperfusión/terapia , Trasplante de Células Madre , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Progresión de la Enfermedad , Inyecciones Intraarteriales , Macrófagos/metabolismo , Ratas Wistar , Insuficiencia Renal Crónica/prevención & control , Células Madre/metabolismo , Linfocitos T Reguladores/metabolismo
9.
J Am Soc Nephrol ; 27(9): 2762-70, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26940093

RESUMEN

In humans, nephrogenesis is completed prenatally, with nephrons formed until 34 weeks of gestational age. We hypothesized that urine of preterm neonates born before the completion of nephrogenesis is a noninvasive source of highly potent stem/progenitor cells. To test this hypothesis, we collected freshly voided urine at day 1 after birth from neonates born at 31-36 weeks of gestational age and characterized isolated cells using a single-cell RT-PCR strategy for gene expression analysis and flow cytometry and immunofluorescence for protein expression analysis. Neonatal stem/progenitor cells expressed markers of nephron progenitors but also, stromal progenitors, with many single cells coexpressing these markers. Furthermore, these cells presented mesenchymal stem cell features and protected cocultured tubule cells from cisplatin-induced apoptosis. Podocytes differentiated from the neonatal stem/progenitor cells showed upregulation of podocyte-specific genes and proteins, albumin endocytosis, and calcium influx via podocyte-specific transient receptor potential cation channel, subfamily C, member 6. Differentiated proximal tubule cells showed upregulation of specific genes and significantly elevated p-glycoprotein activity. We conclude that urine of preterm neonates is a novel noninvasive source of kidney progenitors that are capable of differentiation into mature kidney cells and have high potential for regenerative kidney repair.


Asunto(s)
Riñón/citología , Células Madre/citología , Orina/citología , Diferenciación Celular , Humanos , Recién Nacido , Recien Nacido Prematuro
10.
Int J Exp Pathol ; 91(2): 144-54, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20041964

RESUMEN

The effects of experimental type 1 diabetes were investigated in the acinar epithelium of rat ventral prostate, focusing on the rates of cell proliferation and the frequency of apoptosis and p63-positive cells. Type 1 diabetes was induced in adult male Wistar rats by a single alloxan administration (42 mg/kg b.w.) and its effects were analysed for 1 week and 3 months after the establishment of the disease. A group of diabetic rats was treated daily with 5 IU of insulin during 1 week after diabetes had been diagnosed. Immunocytochemical methods for the localization of cell proliferation antigen (PCNA), androgen receptor (AR) and p63 protein were carried out, and apoptotic cells were identified by TUNEL essay. In diabetic rats, testosterone levels reduced drastically after 1 week and in a lower degree after 3 months. In short-term diabetic rats, cell proliferation decreased, and in medium-term, epithelial apoptotic rates increased. In both periods after the onset of diabetes, the frequency of p63-positive cells doubled. Insulin treatment was effective in preventing testosterone decrease, p63-positive cell increase and apoptotic rates, but did not interfere in cell proliferation. This investigation shows that, soon after diabetes onset, there are important modifications in cell proliferation within the acinar prostatic epithelium, and in longer term, there is a marked impact on kinetics of differentiation and cell death, which may initially be attributable to an androgenic fall, but is probably also because of other factors related to diabetes, as changes are considerably different from those resulting from castration.


Asunto(s)
Apoptosis , Diabetes Mellitus Experimental/patología , Próstata/patología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/efectos de los fármacos , Glucemia/biosíntesis , Peso Corporal , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Epitelio/metabolismo , Epitelio/patología , Hormonas Esteroides Gonadales/sangre , Insulina/uso terapéutico , Masculino , Tamaño de los Órganos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Próstata/metabolismo , Ratas , Ratas Wistar , Receptores Androgénicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...