Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gen Comp Endocrinol ; 246: 164-182, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27964922

RESUMEN

The increased use of massive sequencing technologies has enabled the identification of several genes known to be involved in different mechanisms associated with reproduction that so far have only been studied in vertebrates and other model invertebrate species. In order to further investigate the genes involved in Litopenaeus vannamei reproduction, cDNA and SSH libraries derived from female eyestalk and gonad were produced, allowing the identification of expressed sequences tags (ESTs) that potentially have a role in the regulation of gonadal maturation. In the present study, different transcripts involved in reproduction were identified and a number of them were characterized as full-length. These transcripts were evaluated in males and females in order to establish their tissue expression profiles during developmental stages (juvenile, subadult and adult), and in the case of females, their possible association with gonad maturation was assessed through expression analysis of vitellogenin. The results indicated that the expression of vitellogenin receptor (vtgr) and minichromosome maintenance (mcm) family members in the female gonad suggest an important role during previtellogenesis. Additionally, the expression profiles of genes such as famet, igfbp and gpcr in brain tissues suggest an interaction between the insulin/insulin-like growth factor signaling pathway (IIS) and methyl farnesoate (MF) biosynthesis for control of reproduction. Furthermore, the specific expression pattern of farnesoic acid O-methyltransferase suggests that final synthesis of MF is carried out in different target tissues, where it is regulated by esterase enzymes under a tissue-specific hormonal control. Finally, the presence of a vertebrate type steroid receptor in hepatopancreas and intestine besides being highly expressed in female gonads, suggest a role of that receptor during sexual maturation.


Asunto(s)
Biomarcadores/análisis , Ojo/metabolismo , Regulación de la Expresión Génica , Ovario/metabolismo , Penaeidae/metabolismo , Reproducción/fisiología , Transcriptoma , Animales , ADN Complementario/metabolismo , Proteínas del Huevo/genética , Proteínas del Huevo/metabolismo , Etiquetas de Secuencia Expresada , Femenino , Masculino , Penaeidae/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
Gene ; 582(2): 148-60, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26861611

RESUMEN

The crustacean hyperglycemic hormone (CHH) family is an important group of neuropeptides involved in controlling growth, reproduction, and stress response in decapod species. In this study, a new gene containing 4 exons-3 introns flanked by canonical 5'-GT-AG-3' intron splice-site junctions was isolated from Litopenaeus vannamei. Two full length transcripts of this CHH were isolated from eyestalk and pericardial tissue of males and females using rapid amplification of cDNA ends (RACE). Transcripts sequences were 1578bp in length in males pericardial tissues and in males and females eyestalk with 100% identity, but the transcript isolated from females pericardial tissues was shorter (974bp). The differences in transcripts length is a result of two polyadenylation sites present in the 3'UTR resulting in two transcription termination signals. Transcript sequences encoded one unique protein that can be classified as type I CHH subfamily because of the 4 exons and 3 introns structure, although the CPRP region is not-well conserved and there is no amidation in the C-terminal of the deduced amino acid sequence. Furthermore, there is a glycine inserted in the mature peptide not at position 12 as in type II CHHs but after amino acid 31 and the phylogenetic analysis did not group the peptide within type I, but closer to type II CHHs. We demonstrated by endpoint-PCR, qPCR, and in situ hybridization (ISH), that this gene is expressed in neuroendocrine organs known to express CHHs in penaeid shrimp, including X-organ and optic nerve in eyestalk, supraesophageal ganglion (SoG), but it is also expressed in other organs as gill, gut, pericardial cavity, as well as in terminal ampoule or spermatophore and vas deferens of males.


Asunto(s)
Proteínas de Artrópodos/genética , Sistema Digestivo/metabolismo , Ojo/metabolismo , Regulación de la Expresión Génica , Hormonas de Invertebrados/genética , Proteínas del Tejido Nervioso/genética , Especificidad de Órganos/genética , Penaeidae/genética , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/metabolismo , Secuencia de Bases , Perfilación de la Expresión Génica , Hormonas de Invertebrados/química , Hormonas de Invertebrados/metabolismo , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia
3.
Comp Biochem Physiol B Biochem Mol Biol ; 163(2): 172-83, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22613818

RESUMEN

Wild female Crassostrea corteziensis oyster (n=245) were analyzed over one year to understand the main ecophysiological events associated to gonad development. Different indicators (mainly biochemical) were analyzed to infer: i) utilization and accumulation of energy reserves (e.g. neutral lipids, carbohydrates, proteins; vitellogenin), ii) membrane components provided by the diet as essential nutrients and indicative of cell proliferation (e.g. highly unsaturated fatty acids linked to phospholipids, sterols), iii) indicators of food availability (chlorophyll a in water, pigments in tissues, specific fatty acids and sterols), iv) gonad development (e.g. gonad coverage area, vitellin). A PCA analysis was applied to 269 measured variables. The first PC (PC1) was composed of total carbohydrate and lipid concentration, percentage of esterified sterols, fatty acids specific of diatoms; 16:1n-7/16:0, 20:5n-3 in neutral lipids with positive loadings and non methylene-interrupted fatty acids (NMI) in neutral lipids with negative loadings. The second PC (PC2) was composed of 18:4n-3 in lipid reserves and the concentration of zeaxanthin, a pigment typical of cyanobacteria with positive loadings and the proportion of 20:4n-6 in polar lipids with negative loading. The third PC (PC3) was composed of gonad coverage area (GCA) and the concentration of vitellin. Variation in GCA confirms that gonad development began in April with an extended period of spawning and rematuration from April to November. The PCA further shows that a second period of minimal maturation from November to March corresponds to the accumulation of reserves (PC1) together with an initial high availability of food (PC2) at the beginning of this period. These two periods are in accordance with the classical periods of allocation of energy to reserves followed by gonad development reported for several mollusks.


Asunto(s)
Ácidos Grasos/metabolismo , Pigmentos Biológicos/metabolismo , Reproducción/fisiología , Animales , Clorofila/metabolismo , Clorofila A , Femenino , Ostreidae , Estaciones del Año , Vitelinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA