Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 9(9)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716734

RESUMEN

mRNA vaccines are likely to become widely used for the prevention of infectious diseases in the future. Nevertheless, a notable gap exists in mechanistic data, particularly concerning the potential effects of sequential mRNA immunization or preexisting immunity on the early innate immune response triggered by vaccination. In this study, healthy adults, with or without documented prior SARS-CoV-2 infection, were vaccinated with the BNT162b2/Comirnaty mRNA vaccine. Prior infection conferred significantly stronger induction of proinflammatory and type I IFN-related gene signatures, serum cytokines, and monocyte expansion after the prime vaccination. The response to the second vaccination further increased the magnitude of the early innate response in both study groups. The third vaccination did not further increase vaccine-induced inflammation. In vitro stimulation of PBMCs with TLR ligands showed no difference in cytokine responses between groups, or before or after prime vaccination, indicating absence of a trained immunity effect. We observed that levels of preexisting antigen-specific CD4 T cells, antibody, and memory B cells correlated with elements of the early innate response to the first vaccination. Our data thereby indicate that preexisting memory formed by infection may augment the innate immune activation induced by mRNA vaccines.


Asunto(s)
Vacuna BNT162 , Vacunas contra la COVID-19 , COVID-19 , Citocinas , Inmunidad Innata , SARS-CoV-2 , Vacunación , Humanos , Inmunidad Innata/inmunología , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Adulto , Masculino , Vacuna BNT162/inmunología , Vacuna BNT162/administración & dosificación , Femenino , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunación/métodos , Citocinas/inmunología , Vacunas de ARNm/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Persona de Mediana Edad , Linfocitos T CD4-Positivos/inmunología , Adulto Joven , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación
2.
NPJ Vaccines ; 9(1): 17, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245545

RESUMEN

The immune responses to Novavax's licensed NVX-CoV2373 nanoparticle Spike protein vaccine against SARS-CoV-2 remain incompletely understood. Here, we show in rhesus macaques that immunization with Matrix-MTM adjuvanted vaccines predominantly elicits immune events in local tissues with little spillover to the periphery. A third dose of an updated vaccine based on the Gamma (P.1) variant 7 months after two immunizations with licensed NVX-CoV2373 resulted in significant enhancement of anti-spike antibody titers and antibody breadth including neutralization of forward drift Omicron variants. The third immunization expanded the Spike-specific memory B cell pool, induced significant somatic hypermutation, and increased serum antibody avidity, indicating considerable affinity maturation. Seven months after immunization, vaccinated animals controlled infection by either WA-1 or P.1 strain, mediated by rapid anamnestic antibody and T cell responses in the lungs. In conclusion, a third immunization with an adjuvanted, low-dose recombinant protein vaccine significantly improved the quality of B cell responses, enhanced antibody breadth, and provided durable protection against SARS-CoV-2 challenge.

3.
Immunity ; 56(10): 2425-2441.e14, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37689061

RESUMEN

Nanoparticles for multivalent display and delivery of vaccine antigens have emerged as a promising avenue for enhancing B cell responses to protein subunit vaccines. Here, we evaluated B cell responses in rhesus macaques immunized with prefusion-stabilized respiratory syncytial virus (RSV) F glycoprotein trimer compared with nanoparticles displaying 10 or 20 copies of the same antigen. We show that multivalent display skews antibody specificities and drives epitope-focusing of responding B cells. Antibody cloning and repertoire sequencing revealed that focusing was driven by the expansion of clonally distinct B cells through recruitment of diverse precursors. We identified two antibody lineages that developed either ultrapotent neutralization or pneumovirus cross-neutralization from precursor B cells with low initial affinity for the RSV-F immunogen. This suggests that increased avidity by multivalent display facilitates the activation and recruitment of these cells. Diversification of the B cell response by multivalent nanoparticle immunogens has broad implications for vaccine design.

5.
Cell Mol Life Sci ; 80(7): 189, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353664

RESUMEN

Targeting CD40 by agonistic antibodies used as vaccine adjuvants or for cancer immunotherapy is a strategy to stimulate immune responses. The majority of studied agonistic anti-human CD40 antibodies require crosslinking of their Fc region to inhibitory FcγRIIb to induce immune stimulation although this has been associated with toxicity in previous studies. Here we introduce an agonistic anti-human CD40 monoclonal IgG1 antibody (MAB273) unique in its specificity to the CD40L binding site of CD40 but devoid of Fcγ-receptor binding. We demonstrate rapid binding of MAB273 to B cells and dendritic cells resulting in activation in vitro on human cells and in vivo in rhesus macaques. Dissemination of fluorescently labeled MAB273 after subcutaneous administration was found predominantly at the site of injection and specific draining lymph nodes. Phenotypic cell differentiation and upregulation of genes associated with immune activation were found in the targeted tissues. Antigen-specific T cell responses were enhanced by MAB273 when given in a prime-boost regimen and for boosting low preexisting responses. MAB273 may therefore be a promising immunostimulatory adjuvant that warrants future testing for therapeutic and prophylactic vaccination strategies.


Asunto(s)
Antineoplásicos , Receptores de IgG , Animales , Receptores de IgG/genética , Macaca mulatta/metabolismo , Antígenos CD40 , Ligando de CD40 , Inmunoglobulina G
6.
Nat Commun ; 14(1): 3713, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349310

RESUMEN

Licensed rabies virus vaccines based on whole inactivated virus are effective in humans. However, there is a lack of detailed investigations of the elicited immune response, and whether responses can be improved using novel vaccine platforms. Here we show that two doses of a lipid nanoparticle-formulated unmodified mRNA vaccine encoding the rabies virus glycoprotein (RABV-G) induces higher levels of RABV-G specific plasmablasts and T cells in blood, and plasma cells in the bone marrow compared to two doses of Rabipur in non-human primates. The mRNA vaccine also generates higher RABV-G binding and neutralizing antibody titers than Rabipur, while the degree of somatic hypermutation and clonal diversity of the response are similar for the two vaccines. The higher overall antibody titers induced by the mRNA vaccine translates into improved cross-neutralization of related lyssavirus strains, suggesting that this platform has potential for the development of a broadly protective vaccine against these viruses.


Asunto(s)
Vacunas Antirrábicas , Virus de la Rabia , Rabia , Animales , Humanos , Rabia/prevención & control , Vacunas Antirrábicas/genética , Anticuerpos ampliamente neutralizantes , ARN Mensajero , Anticuerpos Antivirales , Virus de la Rabia/genética , Glicoproteínas
7.
Nat Commun ; 14(1): 2164, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061513

RESUMEN

Effective humoral immune responses require well-orchestrated B and T follicular helper (Tfh) cell interactions. Whether these interactions are impaired and associated with COVID-19 disease severity is unclear. Here, longitudinal blood samples across COVID-19 disease severity are analysed. We find that during acute infection SARS-CoV-2-specific circulating Tfh (cTfh) cells expand with disease severity. SARS-CoV-2-specific cTfh cell frequencies correlate with plasmablast frequencies and SARS-CoV-2 antibody titers, avidity and neutralization. Furthermore, cTfh cells but not other memory CD4 T cells, from severe patients better induce plasmablast differentiation and antibody production compared to cTfh cells from mild patients. However, virus-specific cTfh cell development is delayed in patients that display or later develop severe disease compared to those with mild disease, which correlates with delayed induction of high-avidity neutralizing antibodies. Our study suggests that impaired generation of functional virus-specific cTfh cells delays high-quality antibody production at an early stage, potentially enabling progression to severe disease.


Asunto(s)
COVID-19 , Linfocitos T Colaboradores-Inductores , Humanos , Células T Auxiliares Foliculares , SARS-CoV-2 , Células Plasmáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...