Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nat Immunol ; 10(5): 504-13, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19363483

RESUMEN

Foxo transcription factors regulate cell cycle progression, cell survival and DNA-repair pathways. Here we demonstrate that deficiency in Foxo3 resulted in greater expansion of T cell populations after viral infection. This exaggerated expansion was not T cell intrinsic. Instead, it was caused by the enhanced capacity of Foxo3-deficient dendritic cells to sustain T cell viability by producing more interleukin 6. Stimulation of dendritic cells mediated by the coinhibitory molecule CTLA-4 induced nuclear localization of Foxo3, which in turn inhibited the production of interleukin 6 and tumor necrosis factor. Thus, Foxo3 acts to constrain the production of key inflammatory cytokines by dendritic cells and to control T cell survival.


Asunto(s)
Células Dendríticas/inmunología , Factores de Transcripción Forkhead/inmunología , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Animales , Presentación de Antígeno/inmunología , Antígenos CD/inmunología , Antígenos CD/metabolismo , Infecciones por Arenaviridae/inmunología , Western Blotting , Antígeno CTLA-4 , Células Dendríticas/metabolismo , Citometría de Flujo , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/metabolismo , Interleucina-6/inmunología , Interleucina-6/metabolismo , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones , Ratones Congénicos , Ratones Transgénicos , Transporte de Proteínas/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
2.
Diabetes ; 58(6): 1275-82, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19289458

RESUMEN

OBJECTIVE: Forkhead box O (FoxO) transcription factors represent evolutionarily conserved targets of insulin signaling, regulating metabolism and cellular differentiation in response to changes in nutrient availability. Although the FoxO1 isoform is known to play a key role in adipogenesis, its physiological role in differentiated adipose tissue remains unclear. RESEARCH DESIGN AND METHODS: In this study, we analyzed the phenotype of FoxO1 haploinsufficient mice to investigate the role of FoxO1 in high-fat diet-induced obesity and adipose tissue metabolism. RESULTS: We showed that reduced FoxO1 expression protects mice against obesity-related insulin resistance with marked improvement not only in hepatic insulin sensitivity but also in skeletal muscle insulin action. FoxO1 haploinsufficiency also resulted in increased peroxisome proliferator-activated receptor (PPAR)gamma gene expression in adipose tissue, with enhanced expression of PPARgamma target genes known to influence metabolism. Moreover, treatment of mice with the PPARgamma agonist rosiglitazone caused a greater improvement in in vivo insulin sensitivity in FoxO1 haploinsufficient animals, including reductions in circulating proinflammatory cytokines. CONCLUSIONS: These findings indicate that FoxO1 proteins negatively regulate insulin action and that their effect may be explained, at least in part, by inhibition of PPARgamma function.


Asunto(s)
Tejido Adiposo/fisiología , Grasas de la Dieta/farmacología , Factores de Transcripción Forkhead/deficiencia , Hipoglucemiantes/farmacología , Resistencia a la Insulina/fisiología , PPAR gamma/genética , Tiazolidinedionas/farmacología , Animales , Proteína Forkhead Box O1 , Eliminación de Gen , Técnica de Clampeo de la Glucosa , Masculino , Ratones , Fenotipo , ARN Mensajero/genética , Valores de Referencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Nat Immunol ; 9(12): 1388-98, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18978794

RESUMEN

The transcription factors Foxo1, Foxo3 and Foxo4 modulate cell fate 'decisions' in diverse systems. Here we show that Foxo1-dependent gene expression was critical at many stages of B cell differentiation. Early deletion of Foxo1 caused a substantial block at the pro-B cell stage due to a failure to express interleukin 7 receptor-alpha. Foxo1 inactivation in late pro-B cells resulted in an arrest at the pre-B cell stage due to lower expression of the recombination-activating genes Rag1 and Rag2. Deletion of Foxo1 in peripheral B cells led to fewer lymph node B cells due to lower expression of L-selectin and failed class-switch recombination due to impaired upregulation of the gene encoding activation-induced cytidine deaminase. Thus, Foxo1 regulates a transcriptional program that is essential for early B cell development and peripheral B cell function.


Asunto(s)
Linfocitos B/citología , Diferenciación Celular/inmunología , Factores de Transcripción Forkhead/inmunología , Animales , Linfocitos B/inmunología , Southern Blotting , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Expresión Génica/inmunología , Reordenamiento Génico de Linfocito B/genética , Proteínas de Homeodominio/inmunología , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Ratones , Ratones Mutantes , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/inmunología , Células Madre/metabolismo , Transcripción Genética/inmunología
4.
Cell Cycle ; 7(7): 837-41, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18414034

RESUMEN

Human cancer cells frequently harbor chromosomal translocations that create chimeric fusion genes. The t(2;13) translocation is characteristic of the pediatric muscle tumor, alveolar rhabdomyosarcoma, and produces the chimeric transcription factor, PAX3-FOXO1, that contains the DNA binding elements of PAX3 and the transcriptional activation domain of FOXO1. Experiments designed to determine how PAX3-FOXO1 expression contributes to the development of muscle cell-derived tumors resulted in the discovery that the fusion protein misregulates gene expression and interrupts myogenic differentiation through a unique gain of function mechanism. These results yield new insight into how tumor-associated genetic alterations increase the likelihood of cancer formation and may lead to new therapeutic approaches.


Asunto(s)
Diferenciación Celular/fisiología , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Factores de Transcripción Paired Box/metabolismo , Rabdomiosarcoma Alveolar/metabolismo , Western Blotting , Línea Celular , Proteína Forkhead Box O1 , Humanos , Inmunoprecipitación , Modelos Biológicos , Mioblastos/citología , Factor de Transcripción PAX3 , Ubiquitinación
5.
Genome Res ; 18(1): 46-59, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18042645

RESUMEN

By integrating genome-wide maps of RNA polymerase II (Polr2a) binding with gene expression data and H3ac and H3K4me3 profiles, we characterized promoters with enriched activity in mouse embryonic stem cells (mES) as well as adult brain, heart, kidney, and liver. We identified approximately 24,000 promoters across these samples, including 16,976 annotated mRNA 5' ends and 5153 additional sites validating cap-analysis of gene expression (CAGE) 5' end data. We showed that promoters with CpG islands are typically non-tissue specific, with the majority associated with Polr2a and the active chromatin modifications in nearly all the tissues examined. By contrast, the promoters without CpG islands are generally associated with Polr2a and the active chromatin marks in a tissue-dependent way. We defined 4396 tissue-specific promoters by adapting a quantitative index of tissue-specificity based on Polr2a occupancy. While there is a general correspondence between Polr2a occupancy and active chromatin modifications at the tissue-specific promoters, a subset of them appear to be persistently marked by active chromatin modifications in the absence of detectable Polr2a binding, highlighting the complexity of the functional relationship between chromatin modification and gene expression. Our results provide a resource for exploring promoter Polr2a binding and epigenetic states across pluripotent and differentiated cell types in mammals.


Asunto(s)
Mapeo Cromosómico , Islas de CpG/fisiología , Células Madre Embrionarias/fisiología , Regulación de la Expresión Génica/fisiología , Genoma/fisiología , Regiones Promotoras Genéticas/fisiología , Animales , Diferenciación Celular/fisiología , Cromatina/genética , Cromatina/metabolismo , Células Madre Embrionarias/citología , Femenino , Ratones , Especificidad de Órganos/fisiología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
6.
Proc Natl Acad Sci U S A ; 104(46): 18085-90, 2007 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-17986608

RESUMEN

The chimeric protein PAX3-FOXO1, resulting from a translocation between chromosomes 2 and 13, is the most common genetic aberration in the alveolar subtype of the human skeletal muscle tumor, rhabdomyosarcoma. To understand how PAX3-FOXO1 contributes to tumor development, we isolated and characterized muscle cells from transgenic mice expressing PAX3-FOXO1 under control of the PAX3 promoter. We demonstrate that these myoblasts are unable to complete myogenic differentiation because of an inability to up-regulate p57Kip2 transcription. This defect is caused by reduced levels of the EGR1 transcriptional activator resulting from a direct, destabilizing interaction with PAX3-FOXO1. Neither PAX3 nor FOXO1 share the ability to regulate p57Kip2 transcription. Thus, the breakage and fusion of the genes encoding these transcription factors creates a unique chimeric protein that controls a key cell-cycle and -differentiation regulator.


Asunto(s)
Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Factores de Transcripción Forkhead/fisiología , Regulación de la Expresión Génica/fisiología , Factores de Transcripción Paired Box/fisiología , Animales , Ensayo de Cambio de Movilidad Electroforética , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Humanos , Hidrólisis , Ratones , Ratones Transgénicos , Neoplasias de los Músculos/genética , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/genética , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Rabdomiosarcoma/genética
7.
Cell ; 128(2): 235-7, 2007 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-17254960

RESUMEN

The FoxO transcription factors have been implicated in many processes including tumor suppression and cell death. In this issue, two groups now report on mice that conditionally lack the three predominant FoxO transcription factors. Demonstrate that FoxOs are critical for the long-term maintenance of hematopoietic stem cells, and show that FoxOs suppress the formation of hemangiomas and lymphomas in mice.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Factores de Transcripción Forkhead/metabolismo , Hemangioma/genética , Células Madre Hematopoyéticas/metabolismo , Linfoma/genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica/genética , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Regulación Neoplásica de la Expresión Génica/genética , Hemangioma/metabolismo , Humanos , Linfoma/metabolismo , Proteínas Supresoras de Tumor/genética
8.
Transgenic Res ; 15(5): 595-614, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16952014

RESUMEN

The t(2;13) chromosomal translocation is found in the majority of human alveolar rhabdomyosarcomas (RMS). The resulting PAX3-FKHR fusion protein contains PAX3 DNA-binding domains fused to the potent transactivation domain of FKHR, suggesting that PAX3-FKHR functions to deregulate PAX3-specific target genes and signaling pathways. We previously developed transgenic mice expressing PAX3-FKHR under the control of mouse Pax3 regulatory sequences to test this hypothesis. We reported that PAX3-FKHR interferes with normal Pax3 developmental functions, with mice exhibiting neural tube and neural crest abnormalities that mimic those found in Pax3-deficient Splotch mice. Here we expanded those studies to show that developmental expression of PAX3-FKHR results in aberrant myogenesis in the developing somites and neural tube, leading to ectopic skeletal muscle formation in the mature spinal cord. Gene expression profiling indicated that PAX3-FKHR expression in the developing neural tube induces a myogenic pattern of gene expression at the expense of the normal neurogenic program. Somite defects in PAX3-FKHR transgenic animals resulted in skeletal malformations that included rib fusions and mis-attachments. As opposed to the neural tube defects, the severity of the rib phenotype was rescued by reducing Pax3 levels through mating with Splotch mice. Embryos from the transgenic line expressing the highest levels of PAX3-FKHR had severe neural tube defects, including exencephaly, and almost half of the embryos died between gestational ages E13.5-E15.5. Nearly all of the embryos that survived to term died after birth due to severe spina bifida, rather than the absence of a muscular diaphragm. These studies reveal a prominent role for PAX3-FKHR in disrupting Pax3 functions and in deregulating skeletal muscle development, suggesting that this fusion protein plays a critical role in the pathogenesis of alveolar RMS by influencing the commitment and differentiation of the myogenic cell lineage.


Asunto(s)
Coristoma/genética , Factores de Transcripción Forkhead/genética , Desarrollo de Músculos/genética , Defectos del Tubo Neural/genética , Factores de Transcripción Paired Box/genética , Proteínas Recombinantes de Fusión/genética , Animales , Diferenciación Celular/genética , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/fisiología , Humanos , Ratones , Ratones Transgénicos , Músculo Esquelético/citología , Defectos del Tubo Neural/patología , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/fisiología , Proteínas Recombinantes de Fusión/fisiología , Rabdomiosarcoma Alveolar/etiología , Rabdomiosarcoma Alveolar/genética , Rabdomiosarcoma Alveolar/patología , Somitos/patología
9.
Exp Gerontol ; 41(8): 709-17, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16806782

RESUMEN

The FOXO family of transcription factors has been implicated in several cellular processes including cell cycle arrest, cell death and protection from stress stimuli. FOXO function is influenced by multiple signaling pathways. Many of these pathways are known to be misregulated in cancer. Perturbation of FOXO function leads to uncontrolled cell proliferation and accumulation of DNA damage. It is becoming clear that active FOXO proteins play an important role in keeping cells in check and inactivation of FOXO proteins is associated with characteristics of cancer cells. FOXO proteins may represent new therapeutic targets for a broad spectrum of cancers.


Asunto(s)
Transformación Celular Neoplásica/genética , Factores de Transcripción Forkhead/fisiología , Neoplasias/genética , Acetilación , Animales , Antineoplásicos/farmacología , Daño del ADN , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Proteínas de Neoplasias/fisiología , Fosforilación , Ubiquitina/metabolismo
10.
Nat Genet ; 38(5): 589-93, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16642023

RESUMEN

The total mass of islets of Langerhans is reduced in individuals with type 2 diabetes, possibly contributing to the pathogenesis of this condition. Although the regulation of islet mass is complex, recent studies have suggested the importance of a signaling pathway that includes the insulin or insulin-like growth factor-1 receptors, insulin receptor substrate and phosphatidylinositol (PI) 3-kinase. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) is a serine-threonine kinase that mediates signaling downstream of PI 3-kinase. Here we show that mice that lack PDK1 specifically in pancreatic beta cells (betaPdk1-/- mice) develop progressive hyperglycemia as a result of a loss of islet mass. The mice show reductions in islet density as well as in the number and size of cells. Haploinsufficiency of the gene for the transcription factor Foxo1 resulted in a marked increase in the number, but not the size, of cells and resulted in the restoration of glucose homeostasis in betaPdk1-/- mice. These results suggest that PDK1 is important in maintenance of pancreatic cell mass and glucose homeostasis.


Asunto(s)
Diabetes Mellitus Experimental/genética , Islotes Pancreáticos/enzimología , Islotes Pancreáticos/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Animales , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/patología , Ratones , Ratones Noqueados , Transducción de Señal
11.
Cell ; 117(4): 421-6, 2004 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-15137936

RESUMEN

Forkhead transcription factors of the FoxO subfamily are emerging as a shared component among pathways regulating diverse cellular functions, such as differentiation, metabolism, proliferation, and survival. Their transcriptional output is controlled via a two-tiered mechanism of phosphorylation and acetylation. Modest alterations of this balance can result in profound effects. The gamut of phenotypes runs from protection against diabetes and predisposition to neoplasia, conferred by FoxO loss of function, to increased cellular survival and a marked catabolic response associated with gain of function.


Asunto(s)
Transformación Celular Neoplásica/genética , Metabolismo Energético/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Acetilación , Animales , Diferenciación Celular/genética , Supervivencia Celular/genética , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Genes Letales/genética
12.
Mol Cell ; 14(4): 416-8, 2004 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-15149589

RESUMEN

Two recent reports reveal new roles for FoxO proteins in cell proliferation and tumorigenesis. Seoane and colleagues show that FoxO proteins play key roles in the TGFbeta-dependent activation of p21Cip1 by partnering with Smad3 and Smad4. FoxG1, a protein from a distinct Fox subfamily, binds FoxO/Smad complexes and blocks p21Cip1 expression. These interactions establish a relationship between the PI3K pathway, FoxG1, and the TGFbeta/Smad pathways. The second report identifies IkappaB kinase as a negative regulator of FoxO proteins, suggesting a mechanism for relieving negative regulation of cell cycle and promoting tumor cell proliferation.


Asunto(s)
Transformación Celular Neoplásica/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas Portadoras/genética , División Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ciclinas/genética , Proteínas de Unión al ADN/genética , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas Mitocondriales/genética , Proteínas del Tejido Nervioso/genética , Fosfatidilinositol 3-Quinasas/genética , Factor de Crecimiento Transformador beta/genética
13.
Proc Natl Acad Sci U S A ; 101(9): 2975-80, 2004 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-14978268

RESUMEN

Genetic analysis in Caenorhabditis elegans has uncovered essential roles for DAF-16 in longevity, metabolism, and reproduction. The mammalian orthologs of DAF-16, the closely-related FOXO subclass of forkhead transcription factors (FKHR/FOXO1, FKHRL1/FOXO3a, and AFX/FOXO4), also have important roles in cell cycle arrest, apoptosis and stress responses in vitro, but their in vivo physiological roles are largely unknown. To elucidate their role in normal development and physiology, we disrupted each of the Foxo genes in mice. Foxo1-null embryos died on embryonic day 10.5 as a consequence of incomplete vascular development. Foxo1-null embryonic and yolk sac vessels were not well developed at embryonic day 9.5, and Foxo1 expression was found in a variety of embryonic vessels, suggesting a crucial role of this transcription factor in vascular formation. On the other hand, both Foxo3a- and Foxo4-null mice were viable and grossly indistinguishable from their littermate controls, indicating dispensability of these two members of the Foxo transcription factor family for normal vascular development. Foxo3a-null females showed age-dependent infertility and had abnormal ovarian follicular development. In contrast, histological analyses of Foxo4-null mice did not identify any consistent abnormalities. These results demonstrate that the physiological roles of Foxo genes are functionally diverse in mammals.


Asunto(s)
Desarrollo Embrionario y Fetal/genética , Regulación del Desarrollo de la Expresión Génica/genética , Variación Genética , Factores de Transcripción/genética , Animales , Femenino , Muerte Fetal , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead , Infertilidad Femenina/genética , Masculino , Ratones , Familia de Multigenes , Neovascularización Fisiológica/genética , Ovario/embriología , Eliminación de Secuencia , Saco Vitelino/fisiología
14.
Dev Cell ; 4(1): 119-29, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12530968

RESUMEN

An outstanding question in adipocyte biology is how hormonal cues are relayed to the nucleus to activate the transcriptional program that promotes adipogenesis. The forkhead transcription factor Foxo1 is regulated by insulin via Akt-dependent phosphorylation and nuclear exclusion. We show that Foxo1 is induced in the early stages of adipocyte differentiation but that its activation is delayed until the end of the clonal expansion phase. Constitutively active Foxo1 prevents the differentiation of preadipocytes, while dominant-negative Foxo1 restores adipocyte differentiation of fibroblasts from insulin receptor-deficient mice. Further, Foxo1 haploinsufficiency protects from diet-induced diabetes in mice. We propose that Foxo1 plays an important role in the integration of hormone-activated signaling pathways with the complex transcriptional cascade that promotes adipocyte differentiation.


Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Diferenciación Celular , Factores de Transcripción/metabolismo , Células 3T3 , Tejido Adiposo/crecimiento & desarrollo , Tejido Adiposo/metabolismo , Animales , Tamaño de la Célula , Diabetes Mellitus/inducido químicamente , Diabetes Mellitus/metabolismo , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/farmacología , Fibroblastos , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead , Regulación de la Expresión Génica , Resistencia a la Insulina , Ratones , Mutación/genética , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Factores de Transcripción/genética
15.
Cancer Res ; 62(23): 6981-9, 2002 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-12460916

RESUMEN

We have recently characterized T24T, an invasive and metastatic variant of the T24 human bladder cell line, resulting in a model for bladder cancer progression. To gain additional insight into the repertoire of genetic changes that may be responsible for the invasive and metastatic phenotype, we used spectral karyotyping (SKY) in combination with comparative genomic hybridization (CGH) in these cells. To assess the functional significance of the genetic differences found between the two cell lines, we have developed a positional expression profiling (PEP) method for comparing gene expression data obtained from oligonucleotide microarrays based upon chromosomal position. Using SKY and CGH, we were able to define the genetic changes in the cell lines, and in addition, resolve the identity of all marker chromosomes from our initial karyotyping and G-band analysis. PEP analysis revealed important similarities and differences when compared with the cytogenetic data, allowing insights of how genomic structural changes affect gene expression on a regional scale. The shape of the expression profiles for chromosomes 8, 12, and X correlated well with the numerical imbalances revealed by CGH and SKY, whereas regions like 10q, gained in T24T compared with T24, was not associated with changes in gene expression. Furthermore, we have shown that 12p, a region of agreement between CGH and PEP harbors RhoGDI2, a candidate gene, the expression of which inversely correlates with bladder tumor progression, demonstrating the usefulness of this multimodal approach in identifying promising genetic changes that may be responsible for the invasive phenotype.


Asunto(s)
Aberraciones Cromosómicas , Neoplasias de la Vejiga Urinaria/genética , Perfilación de la Expresión Génica , Ligamiento Genético , Humanos , Cariotipificación , Invasividad Neoplásica , Metástasis de la Neoplasia , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/patología
16.
J Clin Invest ; 110(12): 1839-47, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12488434

RESUMEN

Diabetes is caused by an absolute (type 1) or relative (type 2) deficiency of insulin-producing beta cells. The mechanisms governing replication of terminally differentiated beta cells and neogenesis from progenitor cells are unclear. Mice lacking insulin receptor substrate-2 (Irs2) develop beta cell failure, suggesting that insulin signaling is required to maintain an adequate beta cell mass. We report that haploinsufficiency for the forkhead transcription factor Foxo1 reverses beta cell failure in Irs2(-/-) mice through partial restoration of beta cell proliferation and increased expression of the pancreatic transcription factor pancreas/duodenum homeobox gene-1 (Pdx1). Foxo1 and Pdx1 exhibit mutually exclusive patterns of nuclear localization in beta cells, and constitutive nuclear expression of a mutant Foxo1 is associated with lack of Pdx1 expression. We show that Foxo1 acts as a repressor of Foxa2-dependent (Hnf-3beta-dependent) expression from the Pdx1 promoter. We propose that insulin/IGFs regulate beta cell proliferation by relieving Foxo1 inhibition of Pdx1 expression in a subset of cells embedded within pancreatic ducts.


Asunto(s)
Proteínas de Homeodominio , Insulina/metabolismo , Islotes Pancreáticos/crecimiento & desarrollo , Transducción de Señal/fisiología , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Núcleo Celular/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead , Genes Reporteros , Humanos , Proteínas Sustrato del Receptor de Insulina , Péptidos y Proteínas de Señalización Intracelular , Islotes Pancreáticos/citología , Riñón/citología , Ratones , Ratones Noqueados , Microscopía Fluorescente , Páncreas/citología , Páncreas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Regiones Promotoras Genéticas , Isoformas de Proteínas , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transactivadores/genética , Factores de Transcripción/genética
17.
Nat Genet ; 32(2): 245-53, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12219087

RESUMEN

Type 2 diabetes results from impaired action and secretion of insulin. It is not known whether the two defects share a common pathogenesis. We show that haploinsufficiency of the Foxo1 gene, encoding a forkhead transcription factor (forkhead box transcription factor O1), restores insulin sensitivity and rescues the diabetic phenotype in insulin-resistant mice by reducing hepatic expression of glucogenetic genes and increasing adipocyte expression of insulin-sensitizing genes. Conversely, a gain-of-function Foxo1 mutation targeted to liver and pancreatic beta-cells results in diabetes arising from a combination of increased hepatic glucose production and impaired beta-cell compensation due to decreased Pdx1 expression. These data indicate that Foxo1 is a negative regulator of insulin sensitivity in liver, adipocytes and pancreatic beta-cells. Impaired insulin signaling to Foxo1 provides a unifying mechanism for the common metabolic abnormalities of type 2 diabetes.NOTE: In the AOP version of this article, the name of the fourth author was misspelled as W K Cavanee rather than the correct spelling: W K Cavenee. This has been corrected in the full-text online version of the article. The name will appear correctly in the print version.


Asunto(s)
Insulina/fisiología , Islotes Pancreáticos/fisiología , Factores de Transcripción/genética , Animales , Northern Blotting , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead , Inmunohistoquímica , Resistencia a la Insulina/genética , Hígado/metabolismo , Ratones , Ratones Transgénicos , Mutación , Especificidad de Órganos , Receptor de Insulina/genética , Factores de Transcripción/fisiología
19.
J Biol Chem ; 277(37): 34531-9, 2002 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-12114523

RESUMEN

The A33 antigen is a transmembrane protein expressed almost exclusively by intestinal epithelial cells. The level of its expression is robust and uniform throughout the rostrocaudal axis of the human and mouse intestines. In the colon, strong expression is found in the basolateral membranes of both the proliferating cells in the lower regions of the crypts and the differentiating cells in the upper regions of crypts. Similarly, in the small intestine, the protein is highly expressed by all the epithelial cells in the crypts and by the differentiated cells migrating over the villi. Thus, the A33 antigen has emerged as a definitive marker for all intestinal epithelial cells, irrespective of cell lineage and differentiation status. To understand the molecular mechanisms mediating this rare tissue-specific expression pattern, we undertook a comprehensive analysis of the 5'-regulatory region of the human A33 antigen gene. This allowed us to point to positive cis-regulatory elements incorporating consensus Krüppel-like factor and caudal-related homeobox (CDX)-binding sites, located just upstream from the human A33 antigen transcription start site, as being important for the intestine-specific expression pattern of this gene. Further analysis provided evidence that the A33 antigen gene may be one of only a few target genes to be described thus far for the intestine-specific homeobox transcription factor, CDX1. Taken together, our data lead us to propose that the activity of CDX1 is pivotal in mediating the exquisite, intestine-specific expression pattern of the A33 antigen gene.


Asunto(s)
Regulación de la Expresión Génica , Mucosa Intestinal/metabolismo , Glicoproteínas de Membrana/genética , Región de Flanqueo 5' , Animales , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Neoplasias Colorrectales/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Especificidad de Órganos , Regiones Promotoras Genéticas , Alineación de Secuencia , Transcripción Genética , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...