RESUMEN
Annual trivalent influenza vaccines contain one of influenza B lineages; influenza B/Victoria-lineage or influenza B/Yamagata viruses. Theoretically, these vaccines should protect against viruses expected to circulate in the next influenza season. The National Influenza Centers, based on surveillance data from National Reference Laboratories, selects the strains composing each annual trivalent or tetravalent vaccine. Nevertheless, in some epidemics, vaccine strains do not match genetically with circulating strains. The aim of the present study is to compare the HA1-domain of 42 influenza B viruses circulating in Cuba during the 2012-2013 season with the vaccine strain B/Wisconsin/01/2010-like virus from the B/Yamagata lineage, included in the 2012-2013 Northern-Hemisphere Influenza vaccine. The efficacy of the influenza vaccine was also estimated. The analysis of the present study indicates that the B/Victoria and B/Yamagata lineages co-circulated in Cuba in the 2012-2013 season. In 2012-2013 season, according to the sequences analysis, trivalent vaccine did not match with the circulating strains. The present study also detected amino acid substitutions which could have altered the antigenic properties of HA gene. The results presented here suggest the need to consider a possible introduction of tetravalent influenza vaccine in Cuba, as has been recommended by the WHO to ensure higher levels of protection.
Asunto(s)
Reacciones Cruzadas/inmunología , Virus de la Influenza B/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Secuencia de Aminoácidos , Antígenos Virales/química , Antígenos Virales/inmunología , Reacciones Cruzadas/genética , Cuba/epidemiología , Historia del Siglo XXI , Humanos , Virus de la Influenza B/clasificación , Virus de la Influenza B/genética , Vacunas contra la Influenza/genética , Gripe Humana/historia , Gripe Humana/virología , Filogenia , Estaciones del AñoRESUMEN
Influenza A(H1N1)pdm09 virus has evolved continually since its emergence in 2009. For influenza virus strains, genetic changes occurring in HA1 domain of the hemagglutinin cause the emergence of new variants. The aim of our study is to establish genetic associations between 35 A(H1N1)pdm09 viruses circulating in Cuba in 2011-2012 and 2012-2013 seasons, and A/California/07/2009 strain recommended by WHO as the H1N1 component of the influenza vaccine. The phylogenetic analysis revealed the circulation of clades 3, 6A, 6B, 6C and 7. Mutations were detected in the antigenic site or in the receptor-binding domains of HA1 segment, including S174P, S179N, K180Q, S202T, S220T and R222K. Substitutions S174P, S179N, K180Q and R222K were detected in Cuban strains for the first time.