Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 285: 131536, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34273695

RESUMEN

Waste gas fermentation powered by renewable H2 is reaching kiloton scale. The presence of sulfide, inherent to many waste gases, can cause inhibition, requiring additional gas treatment. In this work, acetogenesis and methanogenesis inhibition by sulfide were studied in a 10-L mixed-culture fermenter, supplied with CO2 and connected with a water electrolysis unit for electricity-powered H2 supply. Three cycles of inhibition (1.3 mM total dissolved sulfide (TDS)) and recovery were applied, then the fermenter was operated at 0.5 mM TDS for 35 days. During operation at 0.5 mM TDS the acetate production rate reached 7.1 ± 1.5 mmol C L-1 d-1. Furthermore, 43.7 ± 15.6% of the electrons, provided as H2, were distributed to acetate and 7.7 ± 4.1% to butyrate, the second most abundant fermentation product. Selectivity of sulfide as inhibitor was demonstrated by a 7 days lag-phase of methanogenesis recovery, compared to 48 h for acetogenesis and by the less than 1% electrons distribution to CH4, under 0.5 mM TDS. The microbial community was dominated by Eubacterium, Proteiniphilum and an unclassified member of the Eggerthellaceae family. The taxonomic diversity of the community decreased and conversely the phenotypic diversity increased, during operation. This work illustrated the scale-up potential of waste gas fermentations, by elucidating the effect of sulfide as a common gas impurity, and by demonstrating continuous, potentially renewable supply of electrons.


Asunto(s)
Ácido Acético , Dióxido de Carbono , Reactores Biológicos , Fermentación , Hidrógeno , Sulfuros
2.
Microb Biotechnol ; 13(4): 1026-1038, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32126162

RESUMEN

Biological CO2 sequestration through acetogenesis with H2 as electron donor is a promising technology to reduce greenhouse gas emissions. Today, a major issue is the presence of impurities such as hydrogen sulfide (H2 S) in CO2 containing gases, as they are known to inhibit acetogenesis in CO2 -based fermentations. However, exact values of toxicity and inhibition are not well-defined. To tackle this uncertainty, a series of toxicity experiments were conducted, with a mixed homoacetogenic culture, total dissolved sulfide concentrations ([TDS]) varied between 0 and 5 mM and pH between 5 and 7. The extent of inhibition was evaluated based on acetate production rates and microbial growth. Maximum acetate production rates of 0.12, 0.09 and 0.04 mM h-1 were achieved in the controls without sulfide at pH 7, pH 6 and pH 5. The half-maximal inhibitory concentration (IC50 qAc ) was 0.86, 1.16 and 1.36 mM [TDS] for pH 7, pH 6 and pH 5. At [TDS] above 3.33 mM, acetate production and microbial growth were completely inhibited at all pHs. 16S rRNA gene amplicon sequencing revealed major community composition transitions that could be attributed to both pH and [TDS]. Based on the observed toxicity levels, treatment approaches for incoming industrial CO2 streams can be determined.


Asunto(s)
Microbiota , Acetatos , Fermentación , Concentración de Iones de Hidrógeno , ARN Ribosómico 16S/genética , Sulfuros
3.
Appl Microbiol Biotechnol ; 103(19): 8241-8253, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31482282

RESUMEN

While numerous reports exist on the axenic culturing of different hydrogen-oxidizing bacteria (HOB), knowledge about the enrichment of microbial communities growing on hydrogen, oxygen, and carbon dioxide as sole carbon and energy sources remains negligible. We want to elucidate if in such enrichments, most enriched populations are HOBs or heterotrophic organisms. In the present study, bacteria enriched from a soil sample and grown over 5 transfers using a continuous supply of hydrogen, oxygen, and carbon dioxide to obtain an enriched autotrophic hydrogen-oxidizing microbiome. The success of the enrichment was evaluated by monitoring ammonium consumption and biomass concentration for 120 days. The shift in the microbial composition of the original soil inoculum and all transfers was observed based on 16S rRNA amplicon sequencing. The hydrogen-oxidizing facultative chemolithoautotroph Hydrogenophaga electricum was isolated and found to be one of the abundant species in most transfers. Moreover, Achromobacter was isolated both under heterotrophic and autotrophic conditions, which was characterized as a hydrogen-oxidizing bacterium. The HOB enrichment condition constructed in this study provided an environment for HOB to develop and conquer in all transfers. In conclusion, we showed that enrichments on hydrogen, oxygen, and carbon dioxide as sole carbon and energy sources contain a diverse mixture of HOB and heterotrophs that resulted in a collection of culturable isolates. These isolates can be useful for further investigation for industrial applications.


Asunto(s)
Bacterias/clasificación , Bacterias/metabolismo , Hidrógeno/metabolismo , Microbiología del Suelo , Compuestos de Amonio/metabolismo , Bacterias/genética , Técnicas Bacteriológicas , Dióxido de Carbono/metabolismo , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Metagenómica , Oxidación-Reducción , Oxígeno/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
4.
FEMS Microbiol Ecol ; 95(2)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30445447

RESUMEN

Sporomusa sphaeroides related strains are to date the only homoacetogens known to increase metallic iron corrosion. The goal of this work was to isolate additional homoacetogenic bacteria capable of using Fe(0) as electron donor and to explore their extracellular electron transfer mechanism. Enrichments were started from anoxic corrosion products and yielded Acetobacterium as main homoacetogenic genus. Isolations were performed with a new procedure using plates with a Fe(0) powder top layer. An Acetobacterium strain, closely related to A. malicum and A. wieringae, was isolated, in addition to a S. sphaeroides strain. The Acetobacterium isolate significantly increased Fe(0) corrosion ((1.44 ± 0.16)-fold) compared to abiotic controls. The increase of corrosion by type strains ranged from (1.28 ± 0.13)-fold for A. woodii to (2.03 ± 0.22)-fold for S. sphaeroides. Hydrogen mediated the electron uptake from Fe(0) by the acetogenic isolates and tested type strains. Exchange of the medium and SEM imaging suggested that cells were attached to Fe(0). The corrosion enhancement mechanism is for all tested strains likely related to free extracellular components catalyzing hydrogen formation on the Fe(0) surface, or to the maintenance of low hydrogen concentrations on the Fe(0) surface by attached cells thereby thermodynamically favoring hydrogen formation.


Asunto(s)
Acetobacterium/aislamiento & purificación , Acetobacterium/metabolismo , Transporte de Electrón/fisiología , Hierro/metabolismo , Corrosión , Electrones , Firmicutes/metabolismo , Hidrógeno
5.
Water Res ; 150: 349-357, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30530129

RESUMEN

Ammonia recovery from urine avoids the need for nitrogen removal through nitrification/denitrification and re-synthesis of ammonia (NH3) via the Haber-Bosch process. Previously, we coupled an alkalifying electrochemical cell to a stripping column, and achieved competitive nitrogen removal and energy efficiencies using only electricity as input, compared to other technologies such as conventional column stripping with air. Direct liquid-liquid extraction with a hydrophobic gas membrane could be an alternative to increase nitrogen recovery from urine into the absorbent while minimizing energy requirements, as well as ensuring microbial and micropollutant retention. Here we compared a column with a membrane stripping reactor, each coupled to an electrochemical cell, fed with source-separated urine and operated at 20 A m-2. Both systems achieved similar nitrogen removal rates, 0.34 ±â€¯0.21 and 0.35 ±â€¯0.08 mol N L-1 d-1, and removal efficiencies, 45.1 ±â€¯18.4 and 49.0 ±â€¯9.3%, for the column and membrane reactor, respectively. The membrane reactor improved nitrogen recovery to 0.27 ±â€¯0.09 mol N L-1 d-1 (38.7 ±â€¯13.5%) while lowering the operational (electrochemical and pumping) energy to 6.5 kWhe kg N-1 recovered, compared to the column reactor, which reached 0.15 ±â€¯0.06 mol N L-1 d-1 (17.2 ±â€¯8.1%) at 13.8 kWhe kg N-1. Increased cell concentrations of an autofluorescent E. coli MG1655 + prpsM spiked in the urine influent were observed in the absorbent of the column stripping reactor after 24 h, but not for the membrane stripping reactor. None of six selected micropollutants spiked in the urine were found in the absorbent of both technologies. Overall, the membrane stripping reactor is preferred as it improved nitrogen recovery with less energy input and generated an E. coli- and micropollutant-free product for potential safe reuse. Nitrogen removal rate and efficiency can be further optimized by increasing the NH3 vapor pressure gradient and/or membrane surface area.


Asunto(s)
Amoníaco , Escherichia coli , Reactores Biológicos , Desnitrificación , Nitrificación , Nitrógeno
6.
Water Res ; 146: 244-255, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30273809

RESUMEN

For over a century, anaerobic digestion has been a key technology in stabilizing organic waste streams, while at the same time enabling the recovery of energy. The anticipated transition to a bio-based economy will only increase the quantity and diversity of organic waste streams to be treated, and, at the same time, increase the demand for additional and effective resource recovery schemes for nutrients and organic matter. The performance of anaerobic digestion can be supported and enhanced by (bio)electrochemical systems in a wide variety of hybrid technologies. Here, the possible benefits of combining anaerobic digestion with (bio)electrochemical systems were reviewed in terms of (1) process monitoring, control, and stabilization, (2) nutrient recovery, (3) effluent polishing, and (4) biogas upgrading. The interaction between microorganisms and electrodes with respect to niche creation is discussed, and the potential impact of this interaction on process performance is evaluated. The strength of combining anaerobic digestion with (bio)electrochemical technologies resides in the complementary character of both technologies, and this perspective was used to distinguish transient trends from schemes with potential for full-scale application. This is supported by an operational costs assessment, showing that the economic potential of combining anaerobic digestion with a (bio)electrochemical system is highly case-specific, and strongly depends on engineering challenges with respect to full-scale applications.


Asunto(s)
Biocombustibles , Metano , Anaerobiosis , Reactores Biológicos
7.
Appl Environ Microbiol ; 84(20)2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30054363

RESUMEN

The involvement of Shewanella spp. in biocorrosion is often attributed to their Fe(III)-reducing properties, but they could also affect corrosion by using metallic iron as an electron donor. Previously, we isolated Shewanella strain 4t3-1-2LB from an acetogenic community enriched with Fe(0) as the sole electron donor. Here, we investigated its use of Fe(0) as an electron donor with fumarate as an electron acceptor and explored its corrosion-enhancing mechanism. Without Fe(0), strain 4t3-1-2LB fermented fumarate to succinate and CO2, as was shown by the reaction stoichiometry and pH. With Fe(0), strain 4t3-1-2LB completely reduced fumarate to succinate and increased the Fe(0) corrosion rate (7.0 ± 0.6)-fold in comparison to that of abiotic controls (based on the succinate-versus-abiotic hydrogen formation rate). Fumarate reduction by strain 4t3-1-2LB was, at least in part, supported by chemical hydrogen formation on Fe(0). Filter-sterilized spent medium increased the hydrogen generation rate only 1.5-fold, and thus extracellular hydrogenase enzymes appear to be insufficient to explain the enhanced corrosion rate. Electrochemical measurements suggested that strain 4t3-1-2LB did not excrete dissolved redox mediators. Exchanging the medium and scanning electron microscopy (SEM) imaging indicated that cells were attached to Fe(0). It is possible that strain 4t3-1-2LB used a direct mechanism to withdraw electrons from Fe(0) or favored chemical hydrogen formation on Fe(0) through maintaining low hydrogen concentrations. In coculture with an Acetobacterium strain, strain 4t3-1-2LB did not enhance acetogenesis from Fe(0). This work describes a strong corrosion enhancement by a Shewanella strain through its use of Fe(0) as an electron donor and provides insights into its corrosion-enhancing mechanism.IMPORTANCEShewanella spp. are frequently found on corroded metal structures. Their role in microbial influenced corrosion has been attributed mainly to their Fe(III)-reducing properties and, therefore, has been studied with the addition of an electron donor (lactate). Shewanella spp., however, can also use solid electron donors, such as cathodes and potentially Fe(0). In this work, we show that the electron acceptor fumarate supported the use of Fe(0) as the electron donor by Shewanella strain 4t3-1-2LB, which caused a (7.0 ± 0.6)-fold increase of the corrosion rate. The corrosion-enhancing mechanism likely involved cell surface-associated components in direct contact with the Fe(0) surface or maintenance of low hydrogen levels by attached cells, thereby favoring chemical hydrogen formation by Fe(0). This work sheds new light on the role of Shewanella spp. in biocorrosion, while the insights into the corrosion-enhancing mechanism contribute to the understanding of extracellular electron uptake processes.


Asunto(s)
Electrones , Fumaratos/metabolismo , Hierro/metabolismo , Shewanella/metabolismo , Anaerobiosis , Corrosión , Hidrógeno/análisis , Hidrógeno/metabolismo , Oxidación-Reducción
8.
Sci Rep ; 8(1): 9724, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29950677

RESUMEN

Hexanoic acid (HA), also called caproic acid, can be used as an antimicrobial agent and as a precursor to various chemicals, such as fuels, solvents and fragrances. HA can be produced from ethanol and acetate by the mesophilic anaerobic bacterium Clostridium kluyveri, via two successive elongation steps over butyrate. A high-throughput anaerobic growth curve technique was coupled to a data analysis framework to assess growth kinetics for a range of substrate and product concentrations. Using this method, growth rates and several kinetic parameters were determined for C. kluyveri. A maximum growth rate (µmax) of 0.24 ± 0.01 h-1 was found, with a half-saturation index for acetic acid (KS,AA) of 3.8 ± 0.9 mM. Inhibition by butyric acid occurred at of 124.7 ± 5.7 mM (KI,BA), while the final product, HA, linearly inhibited growth with complete inhibition above 91.3 ± 10.8 mM (KHA of 10.9*10-3 ± 1.3*10-3 mM-1) at pH = 7, indicating that the hexanoate anion also exerts toxicity. These parameters were used to create a dynamic mass-balance model for bioproduction of HA. By coupling data collection and analysis to this modelling framework, we have produced a powerful tool to assess the kinetics of anaerobic micro-organisms, demonstrated here with C. kluyveri, in order further explore the potential of micro-organisms for chemicals production.


Asunto(s)
Clostridium kluyveri/metabolismo , Ácido Acético/metabolismo , Anaerobiosis/fisiología , Antiinfecciosos/farmacología , Ácido Butírico/metabolismo , Caproatos/metabolismo , Clostridium kluyveri/efectos de los fármacos , Etanol/metabolismo , Cinética
10.
Water Res ; 114: 351-370, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28279880

RESUMEN

Annually, thousands of oil spills occur across the globe. As a result, petroleum substances and petrochemical compounds are widespread contaminants causing concern due to their toxicity and recalcitrance. Many remediation strategies have been developed using both physicochemical and biological approaches. Biological strategies are most benign, aiming to enhance microbial metabolic activities by supplying limiting inorganic nutrients, electron acceptors or donors, thus stimulating oxidation or reduction of contaminants. A key issue is controlling the supply of electron donors/acceptors. Bioelectrochemical systems (BES) have emerged, in which an electrical current serves as either electron donor or acceptor for oil spill bioremediation. BES are highly controllable and can possibly also serve as biosensors for real time monitoring of the degradation process. Despite being promising, multiple aspects need to be considered to make BES suitable for field applications including system design, electrode materials, operational parameters, mode of action and radius of influence. The microbiological processes, involved in bioelectrochemical contaminant degradation, are currently not fully understood, particularly in relation to electron transfer mechanisms. Especially in sulfate rich environments, the sulfur cycle appears pivotal during hydrocarbon oxidation. This review provides a comprehensive analysis of the research on bioelectrochemical remediation of oil spills and of the key parameters involved in the process.


Asunto(s)
Contaminación por Petróleo , Petróleo , Biodegradación Ambiental , Electrodos , Hidrocarburos
11.
Artículo en Inglés | MEDLINE | ID: mdl-27725929

RESUMEN

Given the large amount of crude glycerol formed as a by-product in the biodiesel industries and the concomitant decrease in its overall market price, there is a need to add extra value to this biorefinery side stream. Upgrading can be achieved by new biotechnologies dealing with recovery and conversion of glycerol present in wastewaters into value-added products, aiming at a zero-waste policy and developing an economically viable process. In microbial bioelectrochemical systems (BESs), the mixed microbial community growing on the cathode can convert glycerol reductively to 1,3-propanediol (1,3-PDO). However, the product yield is rather limited in BESs compared with classic fermentation processes, and the synthesis of side-products, resulting from oxidation of glycerol, such as organic acids, represents a major burden for recovery of 1,3-PDO. Here, we show that the use of an enriched mixed-microbial community of glycerol degraders and in situ extraction of organic acids positively impacts 1,3-PDO yield and allows additional recovery of propionate from glycerol. We report the highest production yield achieved (0.72 mol1,3-PDO mol-1glycerol) in electricity-driven 1,3-PDO biosynthesis from raw glycerol, which is very close to the 1,3-PDO yield reported thus far for a mixed-microbial culture-based glycerol fermentation process. We also present a combined approach for 1,3-PDO production and propionate extraction in a single three chamber reactor system, which leads to recovery of additional 3-carbon compounds in BESs. This opens up further opportunities for an economical upgrading of biodiesel refinery side or waste streams.

12.
Sci Rep ; 5: 11484, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26127013

RESUMEN

Monitoring in vitro the metabolic activity of microorganisms aids bioprocesses and enables better understanding of microbial metabolism. Redox mediators can be used for this purpose via different electrochemical techniques that are either complex or only provide non-continuous data. Hydrodynamic chronoamperometry using a rotating disc electrode (RDE) can alleviate these issues but was seldom used and is poorly characterized. The kinetics of Faecalibacterium prausnitzii A2-165, a beneficial gut microbe, were determined using a RDE with riboflavin as redox probe. This butyrate producer anaerobically ferments glucose and reduces riboflavin whose continuous monitoring on a RDE provided highly accurate kinetic measurements of its metabolism, even at low cell densities. The metabolic reaction rate increased linearly over a broad range of cell concentrations (9 × 10(4) to 5 × 10(7) cells.mL(-1)). Apparent Michaelis-Menten kinetics was observed with respect to riboflavin (KM = 6 µM; kcat = 5.3 × 10(5) s(-1), at 37 °C) and glucose (KM = 6 µM; kcat = 2.4 × 10(5) s(-1)). The short temporal resolution allows continuous monitoring of fast cellular events such as kinetics inhibition with butyrate. Furthermore, we detected for the first time riboflavin reduction by another potential probiotic, Butyricicoccus pullicaecorum. The ability of the RDE for fast, accurate, simple and continuous measurements makes it an ad hoc tool for assessing bioprocesses at high resolution.


Asunto(s)
Electroquímica/métodos , Bacterias Grampositivas/metabolismo , Hidrodinámica , Anaerobiosis , Recuento de Colonia Microbiana , Electrodos , Glucosa/metabolismo , Cinética , Reproducibilidad de los Resultados , Riboflavina/metabolismo , Factores de Tiempo
13.
Environ Sci Technol ; 49(14): 8833-43, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26079858

RESUMEN

The advent of renewable energy conversion systems exacerbates the existing issue of intermittent excess power. Microbial electrosynthesis can use this power to capture CO2 and produce multicarbon compounds as a form of energy storage. As catalysts, microbial populations can be used, provided side reactions such as methanogenesis are avoided. Here a simple but effective approach is presented based on enrichment of a robust microbial community via several culture transfers with H2:CO2 conditions. This culture produced acetate at a concentration of 1.29 ± 0.15 g L(-1) (maximum up to 1.5 g L(-1); 25 mM) from CO2 at a fixed current of -5 Am(-2) in fed-batch bioelectrochemical reactors at high N2:CO2 flow rates. Continuous supply of reducing equivalents enabled acetate production at a rate of 19 ± 2 gm(-2)d(-1) (projected cathode area) in several independent experiments. This is a considerably high rate compared with other unmodified carbon-based cathodes. 58 ± 5% of the electrons was recovered in acetate, whereas 30 ± 10% of the electrons was recovered in H2 as a secondary product. The bioproduction was most likely H2 based; however, electrochemical, confocal microscopy, and community analyses of the cathodes suggested the possible involvement of the cathodic biofilm. Together, the enrichment approach and galvanostatic operation enabled instant start-up of the electrosynthesis process and reproducible acetate production profiles.


Asunto(s)
Acetatos/metabolismo , Bacterias/metabolismo , Fuentes de Energía Bioeléctrica , Dióxido de Carbono/metabolismo , Técnicas Electroquímicas/métodos , Bacterias/crecimiento & desarrollo , Reactores Biológicos/microbiología , Electrodos , Concentración de Iones de Hidrógeno , Metano/metabolismo , Reproducibilidad de los Resultados
14.
Bioelectrochemistry ; 106(Pt A): 167-76, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25912513

RESUMEN

Several mixed microbial communities have been reported to show robust bioelectrocatalysis of oxygen reduction over time at applicable operation conditions. However, clarification of electron transfer mechanism(s) and identification of essential micro-organisms have not been realised. Therefore, the objective of this study was to shape oxygen reducing biocathodes with different microbial communities by means of surface modification using the electrochemical reduction of two different diazonium salts in order to discuss the relation of microbial composition and performance. The resulting oxygen reducing mixed culture biocathodes had complex bacterial biofilms variable in size and shape as observed by confocal and electron microscopy. Sequence analysis of ribosomal 16S rDNA revealed a putative correlation between the abundance of certain microbiota and biocathode performance. The best performing biocathode developed on the unmodified graphite electrode and reached a high current density for oxygen reducing biocathodes at neutral pH (0.9 A/m(2)). This correlated with the highest domination (60.7%) of a monophyletic group of unclassified γ-Proteobacteria. These results corroborate earlier reports by other groups, however, higher current densities and higher presence of these unclassified bacteria were observed in this work. Therefore, members of this group are likely key-players for highly performing oxygen reducing biocathodes.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Biopelículas/crecimiento & desarrollo , Gammaproteobacteria/metabolismo , Oxígeno/metabolismo , Electrodos , Gammaproteobacteria/genética , Gammaproteobacteria/fisiología , Oxidación-Reducción , ARN Ribosómico 16S/genética , Propiedades de Superficie
15.
Anaerobe ; 30: 70-4, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25179909

RESUMEN

Butyrate has several beneficial properties that are essential to maintain gastrointestinal health. Therefore butyrate-producing bacteria are seen as the next generation of probiotics. The butyrate-producing bacterium Butyricicoccus pullicaecorum (a clostridial cluster IV strain) is such a promising probiotic candidate for people suffering from inflammatory bowel disease. To exert its beneficial properties, it is crucial that B. pullicaecorum survives the harsh conditions of the upper gastrointestinal tract to arrive in the colon in a viable and metabolically active state. Before developing a stable formulation of B. pullicaecorum for oral administration, it is important to know its intrinsic acid and bile tolerance. We monitored the survival during and short chain fatty acid production after incubation in conditions simulating the stomach and small intestine using in vitro batch experiments. In case of acid conditions (pH 2 and pH 3), B. pullicaecorum was viable and active but not cultivable. Cultivability was restored during subsequent small intestine conditions. Importantly, bile and pancreatic juice had no lethal effect. Milk, as a suspension medium, only had a protective effect on the cultivability during the first hour at pH 2. B. pullicaecorum was still metabolically active after upper gastrointestinal conditions and produced short chain fatty acids, but a shift from butyrate to acetate production was observed. Although the butyrate-producing anaerobe B. pullicaecorum showed good intrinsic acid and bile tolerance in terms of viability and metabolic activity, colonization efficiency and butyrate production under colon conditions is needed to further evaluate its probiotic potential.


Asunto(s)
Butiratos/metabolismo , Bacterias Grampositivas/fisiología , Intestino Delgado/microbiología , Viabilidad Microbiana/efectos de los fármacos , Probióticos , Estómago/microbiología , Acetatos/metabolismo , Ácidos/toxicidad , Ácidos y Sales Biliares/metabolismo , Citosol/química , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Bacterias Grampositivas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Jugo Pancreático/metabolismo
16.
Water Res ; 54: 211-21, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24576697

RESUMEN

Anaerobic digestion (AD) is a well-established technology for energy recovery from organic waste streams. Several studies noted that inserting a bioelectrochemical system (BES) inside an anaerobic digester can increase biogas output, however the mechanism behind this was not explored and primary controls were not executed. Here, we evaluated whether a BES could stabilize AD of molasses. Lab-scale digesters were operated in the presence or absence of electrodes, in open (no applied potential) and closed circuit conditions. In the control reactors without electrodes methane production decreased to 50% of the initial rate, while it remained stable in the reactors with electrodes, indicating a stabilizing effect. After 91 days of operation, the now colonized electrodes were introduced in the failing AD reactors to evaluate their remediating capacity. This resulted in an immediate increase in CH4 production and VFA removal. Although a current was generated in the BES operated in closed circuit, no direct effect of applied potential nor current was observed. A high abundance of Methanosaeta was detected on the electrodes, however irrespective of the applied cell potential. This study demonstrated that, in addition to other studies reporting only an increase in methane production, a BES can also remediate AD systems that exhibited process failure. However, the lack of difference between current driven and open circuit systems indicates that the key impact is through biomass retention, rather than electrochemical interaction with the electrodes.


Asunto(s)
Biomasa , Electricidad , Purificación del Agua/métodos , Anaerobiosis , Bacterias/genética , Bacterias/metabolismo , Secuencia de Bases , Reactores Biológicos/microbiología , Técnicas Electroquímicas , Electrodos , Metano/biosíntesis , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Appl Microbiol Biotechnol ; 98(7): 3205-17, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24201892

RESUMEN

Methane (CH4) release from wetlands is an important source of greenhouse gas emissions. Gas exchange occurs mainly through the aerenchyma of plants, and production of greenhouse gases is heavily dependent on rhizosphere biogeochemical conditions (i.e. substrate availability and redox potential). It is hypothesized that by introducing a biocatalyzed anode electrode in the rhizosphere of wetland plants, a competition for carbon and electrons can be invoked between electrical current-generating bacteria and methanogenic Archaea. The anode electrode is part of a bioelectrochemical system (BES) capable of harvesting electrical current from microbial metabolism. In this work, the anode of a BES was introduced in the rhizosphere of rice plants (Oryza sativa), and the impact on methane emissions was monitored. Microbial current generation was able to outcompete methanogenic processes when the bulk matrix contained low concentrations of organic carbon, provided that the electrical circuit with the effective electroactive microorganisms was in place. When interrupting the electrical circuit or supplying an excess of organic carbon, methanogenic metabolism was able to outcompete current generating metabolism. The qPCR results showed hydrogenotrophic methanogens were the most abundant methanogenic group present, while mixotrophic or acetoclastic methanogens were hardly detected in the bulk rhizosphere or on the electrodes. Competition for electron donor and acceptor were likely the main drivers to lower methane emissions. Overall, electrical current generation with BESs is an interesting option to control CH4 emissions from wetlands but needs to be applied in combination with other mitigation strategies to be successful and feasible in practice.


Asunto(s)
Archaea/crecimiento & desarrollo , Bacterias/crecimiento & desarrollo , Fuentes de Energía Bioeléctrica , Efecto Invernadero , Metano/metabolismo , Oryza/microbiología , Archaea/metabolismo , Bacterias/metabolismo , Carbono/metabolismo , Electricidad , Electrodos/microbiología , Rizosfera
18.
N Biotechnol ; 30(5): 573-80, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23403217

RESUMEN

Septic tanks are used for the removal of organic particulates in wastewaters by physical accumulation instead of through the biological production of biogas. Improved biogas production in septic tanks is crucial to increase the potential of this system for both energy generation and organic matter removal. In this study, the effect on the biogas production and biogas quality of coupling a 20 L lab-scale septic tank with a microbial electrolysis cell (MEC) was investigated and compared with a standard septic tank. Both reactors were operated at a volumetric organic loading rate of 0.5gCOD/Ld and a hydraulic retention time between 20 and 40 days using black water as an input under mesophilic conditions for a period of 3 months. The MEC-septic tank was operated at an applied voltage of 2.0±0.1V and the current experienced ranged from 40 mA (0.9A/m(2) projected electrode area) to 180 mA (5A/m(2) projected electrode area). The COD removal was of the order of 85% and the concentration of residual COD was not different between both reactors. Yet, the total phosphorous in the output was on average 39% lower in the MEC-septic tank. Moreover, the biogas production rate in the MEC-septic tank was a factor of 5 higher than in the control reactor and the H2S concentration in the biogas was a factor of 2.5 lower. The extra electricity supplied to the MEC-septic tank was recovered as extra biogas produced. Overall, it appears that the combination of MEC and a septic tank offers perspectives in terms of lower discharge of phosphorus and H2S, nutrient recuperation and a more reliable supply of biogas.


Asunto(s)
Biocombustibles , Técnicas Electroquímicas , Aguas del Alcantarillado/microbiología , Microbiología del Agua , Purificación del Agua/métodos , Humanos
19.
Biochem Soc Trans ; 40(6): 1233-8, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23176460

RESUMEN

Extracellular electron transfer has, in one decade, emerged from an environmental phenomenon to an industrial process driver. On the one hand, electron transfer towards anodes leads to production of power or chemicals such as hydrogen, caustic soda and hydrogen peroxide. On the other hand, electron transfer from cathodes enables bioremediation and bioproduction. Although the microbiology of extracellular electron transfer is increasingly being understood, bringing the processes to application requires a number of considerations that are both operational and technical. In the present paper, we investigate the key applied aspects related to electricity-driven bioproduction, including biofilm development, reactor and electrode design, substrate fluxes, surface chemistry, hydrodynamics and electrochemistry, and finally end-product removal/toxicity. Each of these aspects will be critical for the full exploitation of the intriguing physiological feat that extracellular electron transfer is today.


Asunto(s)
Fuentes de Energía Bioeléctrica , Proteobacteria/metabolismo , Biopelículas , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Electrodos , Transporte de Electrón , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Proteobacteria/fisiología
20.
Microb Biotechnol ; 5(3): 333-46, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21958308

RESUMEN

Bioelectrochemical systems (BES) have been explored according to three main concepts: to produce energy from organic substrates, to generate products and to provide specific environmental services. In this work, by using an engineering approach, biological conversion rates are calculated for BES resp. anaerobic digestion. These rates are compared with currents produced by chemical batteries and chemical fuel cells in order to position BES in the 'energy'-market. To evaluate the potential of generating various products, the biochemistry behind the biological conversion rates is examined in relation to terminal electron transfer molecules. By comparing kinetics rather than thermodynamics, more insight is gained in the biological bottlenecks that hamper a BES. The short-term future for BES research and its possible application is situated in smart niches in sustainable environmental development, i.e. in processes where no large currents or investment cost intensive reactors are needed to obtain the desired results. Some specific examples are identified.


Asunto(s)
Bacterias/química , Fuentes de Energía Bioeléctrica/historia , Fuentes de Energía Bioeléctrica/microbiología , Bacterias/genética , Bacterias/metabolismo , Electricidad , Historia del Siglo XX , Historia del Siglo XXI
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...