Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
medRxiv ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37986980

RESUMEN

Genome-wide genotyping platforms have the capacity to capture genetic variation across different populations, but there have been disparities in the representation of population-dependent genetic diversity. The motivation for pursuing this endeavor was to create a comprehensive genome-wide array capable of encompassing a wide range of neuro-specific content for the Global Parkinson's Genetics Program (GP2) and the Center for Alzheimer's and Related Dementias (CARD). CARD aims to increase diversity in genetic studies, using this array as a tool to foster inclusivity. GP2 is the first supported resource project of the Aligning Science Across Parkinson's (ASAP) initiative that aims to support a collaborative global effort aimed at significantly accelerating the discovery of genetic factors contributing to Parkinson's disease and atypical parkinsonism by generating genome-wide data for over 200,000 individuals in a multi-ancestry context. Here, we present the Illumina NeuroBooster array (NBA), a novel, high-throughput and cost-effective custom-designed content platform to screen for genetic variation in neurological disorders across diverse populations. The NBA contains a backbone of 1,914,934 variants (Infinium Global Diversity Array) complemented with custom content of 95,273 variants implicated in over 70 neurological conditions or traits with potential neurological complications. Furthermore, the platform includes over 10,000 tagging variants to facilitate imputation and analyses of neurodegenerative disease-related GWAS loci across diverse populations. The NBA can identify low frequency variants and accurately impute over 15 million common variants from the latest release of the TOPMed Imputation Server as of August 2023 (reference of over 300 million variants and 90,000 participants). We envisage this valuable tool will standardize genetic studies in neurological disorders across different ancestral groups, allowing researchers to perform genetic research inclusively and at a global scale.

2.
Elife ; 122023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37589453

RESUMEN

Age-associated DNA methylation in blood cells convey information on health status. However, the mechanisms that drive these changes in circulating cells and their relationships to gene regulation are unknown. We identified age-associated DNA methylation sites in six purified blood-borne immune cell types (naive B, naive CD4+ and CD8+ T cells, granulocytes, monocytes, and NK cells) collected from healthy individuals interspersed over a wide age range. Of the thousands of age-associated sites, only 350 sites were differentially methylated in the same direction in all cell types and validated in an independent longitudinal cohort. Genes close to age-associated hypomethylated sites were enriched for collagen biosynthesis and complement cascade pathways, while genes close to hypermethylated sites mapped to neuronal pathways. In silico analyses showed that in most cell types, the age-associated hypo- and hypermethylated sites were enriched for ARNT (HIF1ß) and REST transcription factor (TF) motifs, respectively, which are both master regulators of hypoxia response. To conclude, despite spatial heterogeneity, there is a commonality in the putative regulatory role with respect to TF motifs and histone modifications at and around these sites. These features suggest that DNA methylation changes in healthy aging may be adaptive responses to fluctuations of oxygen availability.


Asunto(s)
Envejecimiento , Linfocitos T CD8-positivos , Humanos , Envejecimiento/genética , Activación de Complemento , Metilación de ADN , Epigénesis Genética
4.
Immunity ; 54(11): 2465-2480.e5, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34706222

RESUMEN

Epigenetic reprogramming underlies specification of immune cell lineages, but patterns that uniquely define immune cell types and the mechanisms by which they are established remain unclear. Here, we identified lineage-specific DNA methylation signatures of six immune cell types from human peripheral blood and determined their relationship to other epigenetic and transcriptomic patterns. Sites of lineage-specific hypomethylation were associated with distinct combinations of transcription factors in each cell type. By contrast, sites of lineage-specific hypermethylation were restricted mostly to adaptive immune cells. PU.1 binding sites were associated with lineage-specific hypo- and hypermethylation in different cell types, suggesting that it regulates DNA methylation in a context-dependent manner. These observations indicate that innate and adaptive immune lineages are specified by distinct epigenetic mechanisms via combinatorial and context-dependent use of key transcription factors. The cell-specific epigenomics and transcriptional patterns identified serve as a foundation for future studies on immune dysregulation in diseases and aging.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Epigenómica , Regulación de la Expresión Génica , Inmunidad , Factores de Transcripción/metabolismo , Transcriptoma , Epigenómica/métodos , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Factores de Transcripción/genética
6.
Mater Sci Eng C Mater Biol Appl ; 94: 279-290, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423710

RESUMEN

Strontium based bioactive glasses have shown a better biocompatibility than calcia based bioactive glasses. In this report, we have shown that the bioactivity is found to be even more when we incorporate Al2O3 upto 1.5 mol% in SiO2-CaO-P2O5-SrO bioactive glass. We have studied the structural, physico-mechanical and bioactive properties in these glasses with varying alumina concentration from 0.5 to 2.5 mol%. The bioactivity of the glasses is evaluated by in vitro test in simulated body fluid (SBF). The formation of hydroxy carbonated apatite layer (HCA) on the surface of glasses after immersion in SBF is identified by the XRD, FTIR and SEM. The substitution of Al2O3 for SrO in these glasses demonstrates a significant enhancement in compressive strength and elastic modulus. However cytotoxicity and cell viability assessed using human osteosarcoma U2-OS cell lines show the growth of the cells without causing any significant loss of viability and cell death upto 1.5 mol% addition of Al2O3. Osteosarcoma cells grow on the surface of bioglasses which make them biocompatible and fit for use in clinical trials.


Asunto(s)
Cerámica/química , Cerámica/farmacología , Vidrio/química , Fenómenos Mecánicos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fuerza Compresiva , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
7.
Mater Sci Eng C Mater Biol Appl ; 92: 424-434, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30184768

RESUMEN

Peptic ulcer is prevalent in about 4% of the world population and nearly 10% of people have been affected by peptic ulcer at some point in their life. Therefore, there is a need for newer efficient and safe anti-ulcer agents. In the present strategy, we have prepared a novel bioactive glass containing 1.3 mol% of barium oxide (BaBG) and evaluated its antiulcer potential in gastroduodenal ulcer models. Prophylactic effect of BaBG pretreatment was evaluated for 5 days in ethanol, aspirin and pyloric ligation-induced gastric ulcer and cysteamine-induced duodenal ulcer models. Repeated treatment of 10 days of BaBG was evaluated in the healing ulcer model of acetic acid. BaBG significantly reduced the ulcerative damage against all the five tested ulcer models. Scanning electron microscope (SEM) images have shown that BaBG forms a physical protective barrier over the gastro-duodenal epithelium cell. In the pyloric-ligation, ethanol and aspirin models, BaBG showed significantly increased in gastric pH, indicating antacid like activity. BaBG treatment significantly increased cell proliferation in the pyloric model. Thus, BaBG mediates antiulcer action by forming a protective physical barrier against harsh luminal factors, acid neutralization and cell proliferation.


Asunto(s)
Compuestos de Bario , Cerámica , Úlcera Duodenal/tratamiento farmacológico , Óxidos , Úlcera Gástrica/tratamiento farmacológico , Animales , Bario/química , Bario/farmacología , Compuestos de Bario/química , Compuestos de Bario/farmacología , Cerámica/química , Cerámica/farmacología , Cisteamina/efectos adversos , Cisteamina/farmacología , Modelos Animales de Enfermedad , Úlcera Duodenal/inducido químicamente , Úlcera Duodenal/metabolismo , Úlcera Duodenal/patología , Masculino , Óxidos/química , Óxidos/farmacología , Ratas , Ratas Wistar , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/metabolismo , Úlcera Gástrica/patología
8.
Sci Rep ; 7(1): 16890, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29203886

RESUMEN

Aging is a biologically universal event, and yet the key events that drive aging are still poorly understood. One approach to generate new hypotheses about aging is to use unbiased methods to look at change across lifespan. Here, we have examined gene expression in the human dorsolateral frontal cortex using RNA- Seq to populate a whole gene co-expression network analysis. We show that modules of co-expressed genes enriched for those encoding synaptic proteins are liable to change with age. We extensively validate these age-dependent changes in gene expression across several datasets including the publically available GTEx resource which demonstrated that gene expression associations with aging vary between brain regions. We also estimated the extent to which changes in cellular composition account for age associations and find that there are independent signals for cellularity and aging. Overall, these results demonstrate that there are robust age-related alterations in gene expression in the human brain and that genes encoding for neuronal synaptic function may be particularly sensitive to the aging process.


Asunto(s)
Envejecimiento , Regulación de la Expresión Génica , Corteza Prefrontal/metabolismo , Sinapsis/metabolismo , Perfilación de la Expresión Génica , Humanos , Longevidad/genética , ARN/química , ARN/aislamiento & purificación , ARN/metabolismo , Análisis de Secuencia de ARN
9.
Neurodegener Dis ; 17(4-5): 208-212, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28558379

RESUMEN

BACKGROUND: Autosomal recessive cerebellar ataxias (ARCA) are a complex group of neurodegenerative disorders with high clinical and genetic heterogeneity. In most cases, the cerebellar ataxia is not pure, and complicating clinical features such as pyramidal signs or extraneurological features are found. OBJECTIVE: To identify the genetic origin of the cerebellar ataxia for 3 consanguineous North African families presenting with ARCA. METHODS: Genome-wide high-density SNP genotyping and whole-exome sequencing were performed followed by Sanger sequencing for mutation confirmation. RESULTS: Two variants were identified in SLC25A46. Mutations in this gene have been previously associated with Charcot-Marie-Tooth type 2 and optic atrophy. While the previously reported variant p.Arg340Cys seems to be consistently associated with the same clinical features such as childhood onset, optic atrophy, gait and speech difficulties, and wasting of the lower limbs, the patient with the novel mutation p.Trp160Ser did not present with optic atrophy and his ocular abnormalities were limited to nystagmus and saccadic pursuit. CONCLUSION: In this study, we report a novel variant (p.Trp160Ser) in SLC25A46 and we broaden the phenotypic spectrum associated with mutations in SLC25A46.


Asunto(s)
Ataxia Cerebelosa/genética , Proteínas Mitocondriales/genética , Mutación/genética , Proteínas de Transporte de Fosfato/genética , Adulto , Ataxia Cerebelosa/diagnóstico por imagen , Consanguinidad , Análisis Mutacional de ADN , Salud de la Familia , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , América del Norte
10.
Mater Sci Eng C Mater Biol Appl ; 69: 108-16, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27612694

RESUMEN

Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO2 in Na2O-CaO-SrO-P2O5-SiO2 system. This work demonstrates that the substitution of SrO for SiO2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO2. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration.


Asunto(s)
Materiales Biocompatibles/química , Vidrio/química , Estroncio/química , Apatitas/química , Materiales Biocompatibles/toxicidad , Carbonatos/química , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Módulo de Elasticidad , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Hemólisis/efectos de los fármacos , Humanos , Microscopía Electrónica de Rastreo , Dióxido de Silicio/química , Espectrometría por Rayos X , Difracción de Rayos X
11.
Neurobiol Aging ; 45: 213.e3-213.e9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27393345

RESUMEN

Here, we set out to study the genetic architecture of Parkinson's disease (PD) through a Genome-Wide Association Study in a Southern Spanish population. About 240 PD cases and 192 controls were genotyped on the NeuroX array. We estimated genetic variation associated with PD risk and age at onset (AAO). Risk profile analyses for PD and AAO were performed using a weighted genetic risk score. Total heritability was estimated by genome-wide complex trait analysis. Rare variants were screened with single-variant and burden tests. We also screened for variation in known PD genes. Finally, we explored runs of homozygosity and structural genomic variations. We replicate PD association (uncorrected p-value < 0.05) at the following loci: ACMSD/TMEM163, MAPT, STK39, MIR4697, and SREBF/RAI1. Subjects in the highest genetic risk score quintile showed significantly increased risk of PD versus the lowest quintile (odds ratio = 3.6, p-value < 4e(-7)), but no significant difference in AAO. We found evidence of runs of homozygosity in 2 PD-associated regions: one intersecting the HLA-DQB1 gene in 6 patients and 1 control; and another intersecting the GBA-SYT11 gene in PD case. The GBA N370S and the LRRK2 G2019S variants were found in 8 and 7 cases, respectively, replicating previous work. A structural variant was found in 1 case in the PARK2 gene locus. This current work represents a comprehensive assessment at a genome-wide level characterizing a novel population in PD genetics.


Asunto(s)
Variación Genética , Estudio de Asociación del Genoma Completo , Cadenas beta de HLA-DQ/genética , Enfermedad de Parkinson/genética , Sinaptotagminas/genética , Edad de Inicio , Anciano , Femenino , Glucosilceramidasa/genética , Homocigoto , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/epidemiología , Riesgo , España/epidemiología , Ubiquitina-Proteína Ligasas/genética
12.
JAMA Neurol ; 72(4): 396-404, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25643325

RESUMEN

IMPORTANCE: Myasthenia gravis is a chronic, autoimmune, neuromuscular disease characterized by fluctuating weakness of voluntary muscle groups. Although genetic factors are known to play a role in this neuroimmunological condition, the genetic etiology underlying myasthenia gravis is not well understood. OBJECTIVE: To identify genetic variants that alter susceptibility to myasthenia gravis, we performed a genome-wide association study. DESIGN, SETTING, AND PARTICIPANTS: DNA was obtained from 1032 white individuals from North America diagnosed as having acetylcholine receptor antibody-positive myasthenia gravis and 1998 race/ethnicity-matched control individuals from January 2010 to January 2011. These samples were genotyped on Illumina OmniExpress single-nucleotide polymorphism arrays. An independent cohort of 423 Italian cases and 467 Italian control individuals were used for replication. MAIN OUTCOMES AND MEASURES: We calculated P values for association between 8,114,394 genotyped and imputed variants across the genome and risk for developing myasthenia gravis using logistic regression modeling. A threshold P value of 5.0×10(-8) was set for genome-wide significance after Bonferroni correction for multiple testing. RESULTS: In the overall case-control cohort, we identified association signals at CTLA4 (rs231770; P=3.98×10(-8); odds ratio, 1.37; 95% CI, 1.25-1.49), HLA-DQA1 (rs9271871; P=1.08×10(-8); odds ratio, 2.31; 95% CI, 2.02-2.60), and TNFRSF11A (rs4263037; P=1.60×10(-9); odds ratio, 1.41; 95% CI, 1.29-1.53). These findings replicated for CTLA4 and HLA-DQA1 in an independent cohort of Italian cases and control individuals. Further analysis revealed distinct, but overlapping, disease-associated loci for early- and late-onset forms of myasthenia gravis. In the late-onset cases, we identified 2 association peaks: one was located in TNFRSF11A (rs4263037; P=1.32×10(-12); odds ratio, 1.56; 95% CI, 1.44-1.68) and the other was detected in the major histocompatibility complex on chromosome 6p21 (HLA-DQA1; rs9271871; P=7.02×10(-18); odds ratio, 4.27; 95% CI, 3.92-4.62). Association within the major histocompatibility complex region was also observed in early-onset cases (HLA-DQA1; rs601006; P=2.52×10(-11); odds ratio, 4.0; 95% CI, 3.57-4.43), although the set of single-nucleotide polymorphisms was different from that implicated among late-onset cases. CONCLUSIONS AND RELEVANCE: Our genetic data provide insights into aberrant cellular mechanisms responsible for this prototypical autoimmune disorder. They also suggest that clinical trials of immunomodulatory drugs related to CTLA4 and that are already Food and Drug Administration approved as therapies for other autoimmune diseases could be considered for patients with refractory disease.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Cadenas alfa de HLA-DQ/genética , Miastenia Gravis/genética , Adulto , Edad de Inicio , Antígeno CTLA-4/genética , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Estados Unidos
13.
Mater Sci Eng C Mater Biol Appl ; 49: 549-559, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25686983

RESUMEN

Barium with low concentration in the glasses acts as a muscle stimulant and is found in human teeth. We have made a primary study by substituting barium in the bioactive glass. The chemical composition containing (46.1-X) SiO2--24.3 Na2O-26.9 CaO-2.6 P2O5, where X=0, 0.4, 0.8, 1.2 and 1.6mol% of BaO was chosen and melted in an electric furnace at 1400±5°C. The glasses were characterized to determine their use in biomedical applications. The nucleation and crystallization regimes were determined by DTA and the controlled crystallization was carried out by suitable heat treatment. The crystalline phase formed was identified by using XRD technique. Bioactivity of these glasses was assessed by immersion in simulated body fluid (SBF) for various time periods. The formation of hydroxy carbonate apatite (HCA) layer was identified by FTIR spectrometry, scanning electron microscope (SEM) and XRD which showed the presence of HCA as the main phase in all tested bioactive glass samples. Flexural strength and densities of bioactive glasses have been measured and found to increase with increasing the barium content. The human blood compatibility of the samples was evaluated and found to be pertinent.


Asunto(s)
Bario/química , Vidrio/química , Apatitas/química , Materiales Biocompatibles/química , Líquidos Corporales/química , Carbonatos/química , Cristalización , Humanos , Ensayo de Materiales/métodos , Microscopía Electrónica de Rastreo/métodos , Dióxido de Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos
14.
Am J Psychiatry ; 172(1): 82-93, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25158072

RESUMEN

OBJECTIVE: Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The authors report a combined genome-wide association study (GWAS) of Tourette's syndrome and OCD. METHOD: The authors conducted a GWAS in 2,723 cases (1,310 with OCD, 834 with Tourette's syndrome, 579 with OCD plus Tourette's syndrome/chronic tics), 5,667 ancestry-matched controls, and 290 OCD parent-child trios. GWAS summary statistics were examined for enrichment of functional variants associated with gene expression levels in brain regions. Polygenic score analyses were conducted to investigate the genetic architecture within and across the two disorders. RESULTS: Although no individual single-nucleotide polymorphisms (SNPs) achieved genome-wide significance, the GWAS signals were enriched for SNPs strongly associated with variations in brain gene expression levels (expression quantitative loci, or eQTLs), suggesting the presence of true functional variants that contribute to risk of these disorders. Polygenic score analyses identified a significant polygenic component for OCD (p=2×10(-4)), predicting 3.2% of the phenotypic variance in an independent data set. In contrast, Tourette's syndrome had a smaller, nonsignificant polygenic component, predicting only 0.6% of the phenotypic variance (p=0.06). No significant polygenic signal was detected across the two disorders, although the sample is likely underpowered to detect a modest shared signal. Furthermore, the OCD polygenic signal was significantly attenuated when cases with both OCD and co-occurring Tourette's syndrome/chronic tics were included in the analysis (p=0.01). CONCLUSIONS: Previous work has shown that Tourette's syndrome and OCD have some degree of shared genetic variation. However, the data from this study suggest that there are also distinct components to the genetic architectures of these two disorders. Furthermore, OCD with co-occurring Tourette's syndrome/chronic tics may have different underlying genetic susceptibility compared with OCD alone.


Asunto(s)
Trastorno Obsesivo Compulsivo/genética , Síndrome de Tourette/genética , Adulto , Comorbilidad , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Trastorno Obsesivo Compulsivo/diagnóstico , Trastorno Obsesivo Compulsivo/epidemiología , Polimorfismo de Nucleótido Simple , Escalas de Valoración Psiquiátrica , Índice de Severidad de la Enfermedad , Síndrome de Tourette/diagnóstico , Síndrome de Tourette/epidemiología
15.
Neurobiol Aging ; 36(3): 1605.e7-12, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25444595

RESUMEN

Our objective was to design a genotyping platform that would allow rapid genetic characterization of samples in the context of genetic mutations and risk factors associated with common neurodegenerative diseases. The platform needed to be relatively affordable, rapid to deploy, and use a common and accessible technology. Central to this project, we wanted to make the content of the platform open to any investigator without restriction. In designing this array we prioritized a number of types of genetic variability for inclusion, such as known risk alleles, disease-causing mutations, putative risk alleles, and other functionally important variants. The array was primarily designed to allow rapid screening of samples for disease-causing mutations and large population studies of risk factors. Notably, an explicit aim was to make this array widely available to facilitate data sharing across and within diseases. The resulting array, NeuroX, is a remarkably cost and time effective solution for high-quality genotyping. NeuroX comprises a backbone of standard Illumina exome content of approximately 240,000 variants, and over 24,000 custom content variants focusing on neurologic diseases. Data are generated at approximately $50-$60 per sample using a 12-sample format chip and regular Infinium infrastructure; thus, genotyping is rapid and accessible to many investigators. Here, we describe the design of NeuroX, discuss the utility of NeuroX in the analyses of rare and common risk variants, and present quality control metrics and a brief primer for the analysis of NeuroX derived data.


Asunto(s)
Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad/genética , Técnicas de Genotipaje/métodos , Enfermedades Neurodegenerativas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Alelos , Costos y Análisis de Costo , Variación Genética , Técnicas de Genotipaje/economía
16.
Mov Disord ; 30(2): 262-6, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25545641

RESUMEN

BACKGROUND: The autosomal dominant spinocerebellar ataxias are most commonly caused by nucleotide repeat expansions followed by base-pair changes in functionally important genes. Structural variation has recently been shown to underlie spinocerebellar ataxia types 15 and 20. METHODS: We applied single-nucleotide polymorphism (SNP) genotyping to determine whether structural variation causes spinocerebellar ataxia in a family from France. RESULTS: We identified an approximately 7.5-megabasepair duplication on chromosome 11q21-11q22.3 that segregates with disease. This duplication contains an estimated 44 genes. Duplications at this locus were not found in control individuals. CONCLUSIONS: We have identified a new spastic ataxia syndrome caused by a genomic duplication, which we have denoted as spinocerebellar ataxia type 39. Finding additional families with this phenotype will be important to identify the genetic lesion underlying disease.


Asunto(s)
Ligamiento Genético , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Espasticidad Muscular/genética , Atrofia Óptica/genética , Ataxias Espinocerebelosas/genética , Trisomía , Mapeo Cromosómico , Cromosomas Humanos Par 11 , Francia , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple/genética
17.
Nat Genet ; 46(9): 989-93, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25064009

RESUMEN

We conducted a meta-analysis of Parkinson's disease genome-wide association studies using a common set of 7,893,274 variants across 13,708 cases and 95,282 controls. Twenty-six loci were identified as having genome-wide significant association; these and 6 additional previously reported loci were then tested in an independent set of 5,353 cases and 5,551 controls. Of the 32 tested SNPs, 24 replicated, including 6 newly identified loci. Conditional analyses within loci showed that four loci, including GBA, GAK-DGKQ, SNCA and the HLA region, contain a secondary independent risk variant. In total, we identified and replicated 28 independent risk variants for Parkinson's disease across 24 loci. Although the effect of each individual locus was small, risk profile analysis showed substantial cumulative risk in a comparison of the highest and lowest quintiles of genetic risk (odds ratio (OR) = 3.31, 95% confidence interval (CI) = 2.55-4.30; P = 2 × 10(-16)). We also show six risk loci associated with proximal gene expression or DNA methylation.


Asunto(s)
Sitios Genéticos , Enfermedad de Parkinson/genética , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Polimorfismo de Nucleótido Simple , Factores de Riesgo
18.
PLoS Genet ; 10(2): e1003991, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24516392

RESUMEN

Old English Sheepdogs and Gordon Setters suffer from a juvenile onset, autosomal recessive form of canine hereditary ataxia primarily affecting the Purkinje neuron of the cerebellar cortex. The clinical and histological characteristics are analogous to hereditary ataxias in humans. Linkage and genome-wide association studies on a cohort of related Old English Sheepdogs identified a region on CFA4 strongly associated with the disease phenotype. Targeted sequence capture and next generation sequencing of the region identified an A to C single nucleotide polymorphism (SNP) located at position 113 in exon 1 of an autophagy gene, RAB24, that segregated with the phenotype. Genotyping of six additional breeds of dogs affected with hereditary ataxia identified the same polymorphism in affected Gordon Setters that segregated perfectly with phenotype. The other breeds tested did not have the polymorphism. Genome-wide SNP genotyping of Gordon Setters identified a 1.9 MB region with an identical haplotype to affected Old English Sheepdogs. Histopathology, immunohistochemistry and ultrastructural evaluation of the brains of affected dogs from both breeds identified dramatic Purkinje neuron loss with axonal spheroids, accumulation of autophagosomes, ubiquitin positive inclusions and a diffuse increase in cytoplasmic neuronal ubiquitin staining. These findings recapitulate the changes reported in mice with induced neuron-specific autophagy defects. Taken together, our results suggest that a defect in RAB24, a gene associated with autophagy, is highly associated with and may contribute to canine hereditary ataxia in Old English Sheepdogs and Gordon Setters. This finding suggests that detailed investigation of autophagy pathways should be undertaken in human hereditary ataxia.


Asunto(s)
Autofagia/genética , Enfermedades de los Perros/genética , Estudio de Asociación del Genoma Completo , Degeneraciones Espinocerebelosas/genética , Proteínas de Unión al GTP rab/genética , Animales , Corteza Cerebelosa/patología , Mapeo Cromosómico , Enfermedades de los Perros/patología , Perros , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Mutación , Polimorfismo de Nucleótido Simple , Degeneraciones Espinocerebelosas/etiología
19.
Neurobiol Aging ; 35(2): 442.e9-442.e16, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24080174

RESUMEN

Genome-wide association studies (GWAS) have been shown to be a powerful approach to identify risk loci for neurodegenerative diseases. Recent GWAS in Parkinson's disease (PD) have been successful in identifying numerous risk variants pointing to novel pathways potentially implicated in the pathogenesis of PD. Contributing to these GWAS efforts, we performed genotyping of previously identified risk alleles in PD patients and control subjects from Greece. We showed that previously published risk profiles for Northern European and American populations are also applicable to the Greek population. In addition, although our study was largely underpowered to detect individual associations, we replicated 5 of 32 previously published risk variants with nominal p values <0.05. Genome-wide complex trait analysis revealed that known risk loci explain disease risk in 1.27% of Greek PD patients. Collectively, these results indicate that there is likely a substantial genetic component to PD in Greece, similarly to other worldwide populations, that remains to be discovered.


Asunto(s)
Sitios Genéticos/genética , Estudio de Asociación del Genoma Completo , Enfermedad de Parkinson/genética , Anciano , Alelos , Femenino , Genotipo , Grecia , Humanos , Masculino , Persona de Mediana Edad , Riesgo
20.
Nucleic Acids Res ; 41(7): e88, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23435227

RESUMEN

Polymorphisms in the target mRNA sequence can greatly affect the binding affinity of microarray probe sequences, leading to false-positive and false-negative expression quantitative trait locus (QTL) signals with any other polymorphisms in linkage disequilibrium. We provide the most complete solution to this problem, by using the latest genome and exome sequence reference data to identify almost all common polymorphisms (frequency >1% in Europeans) in probe sequences for two commonly used microarray panels (the gene-based Illumina Human HT12 array, which uses 50-mer probes, and exon-based Affymetrix Human Exon 1.0 ST array, which uses 25-mer probes). We demonstrate the impact of this problem using cerebellum and frontal cortex tissues from 438 neuropathologically normal individuals. We find that although only a small proportion of the probes contain polymorphisms, they account for a large proportion of apparent expression QTL signals, and therefore result in many false signals being declared as real. We find that the polymorphism-in-probe problem is insufficiently controlled by previous protocols, and illustrate this using some notable false-positive and false-negative examples in MAPT and PRICKLE1 that can be found in many eQTL databases. We recommend that both new and existing eQTL data sets should be carefully checked in order to adequately address this issue.


Asunto(s)
Perfilación de la Expresión Génica , Sondas de Oligonucleótidos/química , Polimorfismo Genético , Sitios de Carácter Cuantitativo , Expresión Génica , Humanos , Desequilibrio de Ligamiento , Análisis de Secuencia por Matrices de Oligonucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...