Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Vaccines ; 8(1): 14, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797262

RESUMEN

Synthetic biology has allowed for the industrial production of supply-limited sesquiterpenoids such as the antimalarial drug artemisinin and ß-farnesene. One of the only unmodified animal products used in medicine is squalene, a triterpenoid derived from shark liver oil, which when formulated into an emulsion is used as a vaccine adjuvant to enhance immune responses in licensed vaccines. However, overfishing is depleting deep-sea shark populations, leading to potential supply problems for squalene. We chemically generated over 20 squalene analogues from fermentation-derived ß-farnesene and evaluated adjuvant activity of the emulsified compounds compared to shark squalene emulsion. By employing a desirability function approach that incorporated multiple immune readouts, we identified analogues with enhanced, equivalent, or decreased adjuvant activity compared to shark squalene emulsion. Availability of a library of structurally related analogues allowed elucidation of structure-function relationships. Thus, combining industrial synthetic biology with chemistry and immunology enabled generation of sustainable terpenoid-based vaccine adjuvants comparable to current shark squalene-based adjuvants while illuminating structural properties important for adjuvant activity.

2.
NPJ Vaccines ; 5: 83, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983577

RESUMEN

Enterotoxigenic E. coli (ETEC) is a leading cause of moderate-to-severe diarrhoea. ETEC colonizes the intestine through fimbrial tip adhesin colonization factors and produces heat-stable and/or heat-labile (LT) toxins, stimulating fluid and electrolyte release leading to watery diarrhoea. We reported that a vaccine containing recombinant colonization factor antigen (CfaEB) targeting fimbrial tip adhesin of the colonization factor antigen I (CFA/I) and an attenuated LT toxoid (dmLT) elicited mucosal and systemic immune responses against both targets. Additionally, the toll-like receptor 4 ligand second-generation lipid adjuvant (TLR4-SLA) induced a potent mucosal response, dependent on adjuvant formulation. However, a combination of vaccine components at their respective individual optimal doses may not achieve the optimal immune profile. We studied a subunit ETEC vaccine prototype in mice using a response surface design of experiments (DoE), consisting of 64 vaccine dose-combinations of CfaEB, dmLT and SLA in four formulations (aqueous, aluminium oxyhydroxide, squalene-in-water stable nanoemulsion [SE] or liposomes containing the saponin Quillaja saponaria-21 [LSQ]). Nine readouts focusing on antibody functionality and plasma cell response were selected to profile the immune response of parenterally administered ETEC vaccine prototype. The data were integrated in a model to identify the optimal dosage of each vaccine component and best formulation. Compared to maximal doses used in mouse models (10 µg CfaEB, 1 µg dmLT and 5 µg SLA), a reduction in the vaccine components up to 37%, 60% and 88% for CfaEB, dmLT and SLA, respectively, maintained or even maximized immune responses, with SE and LSQ the best formulations. The DoE approach can help determine the best vaccine composition with a limited number of experiments and may accelerate development of multi-antigen/component ETEC vaccines.

3.
Vaccine ; 33(48): 6570-8, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26541135

RESUMEN

Pulmonary tuberculosis (TB) remains one of the leading causes of infectious disease death despite widespread usage of the BCG vaccine. A number of new TB vaccines have moved into clinical evaluation to replace or boost the BCG vaccine including ID93+GLA-SE, an adjuvanted subunit vaccine. The vast majority of new TB vaccines in trials are delivered parenterally even though intranasal delivery can augment lung-resident immunity and protective efficacy in small animal models. Parenteral immunization with the adjuvanted subunit vaccine ID93+GLA-SE elicits robust TH1 immunity and protection against aerosolized Mycobacterium tuberculosis in mice and guinea pigs. Here we describe the immunogenicity and efficacy of this vaccine when delivered intranasally. Intranasal delivery switches the CD4 T cell response from a TH1 to a TH17 dominated tissue-resident response with increased frequencies of ID93-specific cells in both the lung tissue and at the lung surface. Surprisingly these changes do not affect the protective efficacy of ID93+GLA-SE. Unlike intramuscular immunization, ID93+GLA does not require the squalene-based oil-in-water emulsion SE to elicit protective CD4 T cells when delivered intranasally. Finally we demonstrate that TNF and the IL-17 receptor are dispensable for the efficacy of the intranasal vaccine suggesting an alternative mechanism of protection.


Asunto(s)
Células TH1/inmunología , Células Th17/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/prevención & control , Adyuvantes Inmunológicos/administración & dosificación , Administración a través de la Mucosa , Animales , Antígenos Bacterianos/inmunología , Vacuna BCG/inmunología , Linfocitos T CD4-Positivos/inmunología , Citocinas/metabolismo , Cobayas , Humanos , Ratones , Mycobacterium tuberculosis/inmunología , Fragmentos de Péptidos/inmunología , Factor de Necrosis Tumoral alfa/inmunología
4.
J Infect Dis ; 212(3): 495-504, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25637347

RESUMEN

BACKGROUND: Mycobacterium tuberculosis infects one third of the world's population and causes >8 million cases of tuberculosis annually. New vaccines are necessary to control the spread of tuberculosis. T cells, interferon γ (IFN-γ), and tumor necrosis factor (TNF) are necessary to control M. tuberculosis infection in both humans and unvaccinated experimental animal models. However, the immune responses necessary for vaccine efficacy against M. tuberculosis have not been defined. The multifunctional activity of T-helper type 1 (TH1) cells that simultaneously produce IFN-γ and TNF has been proposed as a candidate mechanism of vaccine efficacy. METHODS: We used a mouse model of T-cell transfer and aerosolized M. tuberculosis infection to assess the contributions of TNF, IFN-γ, and inducible nitric oxide synthase (iNOS) to vaccine efficacy. RESULTS: CD4(+) T cells were necessary and sufficient to transfer protection against aerosolized M. tuberculosis, but neither CD4(+) T cell-produced TNF nor host cell responsiveness to IFN-γ were necessary. Transfer of Tnf(-/-) CD4(+) T cells from vaccinated donors to Ifngr(-/-) recipients was also sufficient to confer protection. Activation of iNOS to produce reactive nitrogen species was not necessary for vaccine efficacy. CONCLUSIONS: Induction of TH1 cells that coexpress IFN-γ and TNF is not a requirement for vaccine efficacy against M. tuberculosis, despite these cytokines being essential for control of M. tuberculosis in nonvaccinated animals.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Interferón gamma/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/inmunología , Tuberculosis/prevención & control , Factor de Necrosis Tumoral alfa/inmunología , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo II/inmunología , Receptores de Interleucina-17/inmunología , Vacunas contra la Tuberculosis/farmacología
5.
J Immunol ; 193(6): 2911-8, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25086172

RESUMEN

Unlike most pathogens, many of the immunodominant epitopes from Mycobacterium tuberculosis are under purifying selection. This startling finding suggests that M. tuberculosis may gain an evolutionary advantage by focusing the human immune response against selected proteins. Although the implications of this to vaccine development are incompletely understood, it has been suggested that inducing strong Th1 responses against Ags that are only weakly recognized during natural infection may circumvent this evasion strategy and increase vaccine efficacy. To test the hypothesis that subdominant and/or weak M. tuberculosis Ags are viable vaccine candidates and to avoid complications because of differential immunodominance hierarchies in humans and experimental animals, we defined the immunodominance hierarchy of 84 recombinant M. tuberculosis proteins in experimentally infected mice. We then combined a subset of these dominant or subdominant Ags with a Th1 augmenting adjuvant, glucopyranosyl lipid adjuvant in stable emulsion, to assess their immunogenicity in M. tuberculosis-naive animals and protective efficacy as measured by a reduction in lung M. tuberculosis burden of infected animals after prophylactic vaccination. We observed little correlation between immunodominance during primary M. tuberculosis infection and vaccine efficacy, confirming the hypothesis that subdominant and weakly antigenic M. tuberculosis proteins are viable vaccine candidates. Finally, we developed two fusion proteins based on strongly protective subdominant fusion proteins. When paired with the glucopyranosyl lipid adjuvant in stable emulsion, these fusion proteins elicited robust Th1 responses and limited pulmonary M. tuberculosis for at least 6 wk postinfection with a single immunization. These findings expand the potential pool of M. tuberculosis proteins that can be considered as vaccine Ag candidates.


Asunto(s)
Epítopos Inmunodominantes/inmunología , Mycobacterium tuberculosis/inmunología , Proteínas Recombinantes de Fusión/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/inmunología , Adyuvantes Inmunológicos , Animales , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Femenino , Ratones , Células TH1/inmunología , Tuberculosis Pulmonar/prevención & control , Vacunación
6.
J Transl Med ; 8: 87, 2010 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-20868515

RESUMEN

BACKGROUND: Genome-wide gene expression profiling of whole blood is an attractive method for discovery of biomarkers due to its non-invasiveness, simple clinical site processing and rich biological content. Except for a few successes, this technology has not yet matured enough to reach its full potential of identifying biomarkers useful for clinical prognostic and diagnostic applications or in monitoring patient response to therapeutic intervention. A variety of technical problems have hampered efforts to utilize this technology for identification of biomarkers. One significant hurdle has been the high and variable concentrations of globin transcripts in whole blood total RNA potentially resulting in non-specific probe binding and high background. In this study, we investigated and quantified the power of three whole blood profiling approaches to detect meaningful biological expression patterns. METHODS: To compare and quantify the impact of different mitigation technologies, we used a globin transcript spike-in strategy to synthetically generate a globin-induced signature and then mitigate it with the three different technologies. Biological differences, in globin transcript spiked samples, were modeled by supplementing with either 1% of liver or 1% brain total RNA. In order to demonstrate the biological utility of a robust globin artifact mitigation strategy in biomarker discovery, we treated whole blood ex vivo with suberoylanilide hydroxamic acid (SAHA) and compared the overlap between the obtained signatures and signatures of a known biomarker derived from SAHA-treated cell lines and PBMCs of SAHA-treated patients. RESULTS: We found cDNA hybridization targets detect at least 20 times more specific differentially expressed signatures (2597) between 1% liver and 1% brain in globin-supplemented samples than the PNA (117) or no treatment (97) method at FDR = 10% and p-value < 3x10-3. In addition, we found that the ex vivo derived gene expression profile was highly concordant with that of the previously identified SAHA pharmacodynamic biomarkers. CONCLUSIONS: We conclude that an amplification method for gene expression profiling employing cDNA targets effectively mitigates the negative impact on data of abundant globin transcripts and greatly improves the ability to identify relevant gene expression based pharmacodynamic biomarkers from whole blood.


Asunto(s)
ADN Complementario/genética , Perfilación de la Expresión Génica , ARN/sangre , Femenino , Humanos , Masculino , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos
7.
Cancer Cell ; 6(4): 373-85, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15488760

RESUMEN

The telomere-stabilizing enzyme telomerase is induced in tumors and functionally associated with unlimited replicative potential. To further explore its necessity, transgenic mice expressing SV40 or HPV16 oncogenes, which elicit carcinomas in pancreas and skin, respectively, were rendered telomerase-deficient. Absence of telomerase had minimal impact on tumorigenesis, even in terc(-/-) generations (G5-7) exhibiting shortened telomeres and phenotypic abnormalities in multiple organs. Analyses of chromosomal aberrations were not indicative of telomere dysfunction or increased genomic instability in tumors. Quantitative image analysis of telomere repeat intensities comparing biopsies of skin hyperplasia, dysplasia, and carcinoma revealed that telomere numbers and relative lengths were maintained during progression, implicating a means for preserving telomere repeats and functionality in the absence of telomerase.


Asunto(s)
Proteínas Oncogénicas Virales/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Telomerasa/deficiencia , Telómero/metabolismo , Anafase , Animales , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , División Celular , Transformación Celular Neoplásica , Inestabilidad Cromosómica , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , Progresión de la Enfermedad , Hibridación Genética , Hibridación Fluorescente in Situ , Ratones , Ratones Noqueados , Neoplasias Pancreáticas/enzimología , Fenotipo , Neoplasias Cutáneas/enzimología , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...