Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 21(12): e3002413, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048357

RESUMEN

Brown adipose tissue (BAT) dissipates energy as heat, contributing to temperature control, energy expenditure, and systemic homeostasis. In adult humans, BAT mainly exists in supraclavicular areas and its prevalence is associated with cardiometabolic health. However, the developmental origin of supraclavicular BAT remains unknown. Here, using genetic cell marking in mice, we demonstrate that supraclavicular brown adipocytes do not develop from the Pax3+/Myf5+ epaxial dermomyotome that gives rise to interscapular BAT (iBAT). Instead, the Tbx1+ lineage that specifies the pharyngeal mesoderm marks the majority of supraclavicular brown adipocytes. Tbx1Cre-mediated ablation of peroxisome proliferator-activated receptor gamma (PPARγ) or PR/SET Domain 16 (PRDM16), components of the transcriptional complex for brown fat determination, leads to supraclavicular BAT paucity or dysfunction, thus rendering mice more sensitive to cold exposure. Moreover, human deep neck BAT expresses higher levels of the TBX1 gene than subcutaneous neck white adipocytes. Taken together, our observations reveal location-specific developmental origins of BAT depots and call attention to Tbx1+ lineage cells when investigating human relevant supraclavicular BAT.


Asunto(s)
Adipocitos Marrones , Tejido Adiposo Blanco , Adulto , Humanos , Ratones , Animales , Factores de Transcripción , Tejido Adiposo Pardo/fisiología , Adipocitos Blancos , Proteínas de Dominio T Box/genética
2.
Front Nutr ; 10: 1207394, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781121

RESUMEN

Introduction: Brown adipose tissue (BAT) dissipates energy in the form of heat majorly via the mitochondrial uncoupling protein 1 (UCP1). The activation of BAT, which is enriched in the neck area and contains brown and beige adipocytes in humans, was considered as a potential therapeutic target to treat obesity. Therefore, finding novel agents that can stimulate the differentiation and recruitment of brown or beige thermogenic adipocytes are important subjects for investigation. The current study investigated how the availability of extracellular thiamine (vitamin B1), an essential cofactor of mitochondrial enzyme complexes that catalyze key steps in the catabolism of nutrients, affects the expression of thermogenic marker genes and proteins and subsequent functional parameters during ex vivo adipocyte differentiation. Methods: We differentiated primary human adipogenic progenitors that were cultivated from subcutaneous (SC) or deep neck (DN) adipose tissues in the presence of gradually increasing thiamine concentrations during their 14-day differentiation program. mRNA and protein expression of thermogenic genes were analyzed by RT-qPCR and western blot, respectively. Cellular respiration including stimulated maximal and proton-leak respiration was measured by Seahorse analysis. Results: Higher thiamine levels resulted in increased expression of thiamine transporter 1 and 2 both at mRNA and protein levels in human neck area-derived adipocytes. Gradually increasing concentrations of thiamine led to increased basal, cAMP-stimulated, and proton-leak respiration along with elevated mitochondrial biogenesis of the differentiated adipocytes. The extracellular thiamine availability during adipogenesis determined the expression levels of UCP1, PGC1a, CKMT2, and other browning-related genes and proteins in primary SC and DN-derived adipocytes in a concentration-dependent manner. Providing abundant amounts of thiamine further increased the thermogenic competency of the adipocytes. Discussion: Case studies in humans reported that thiamine deficiency was found in patients with type 2 diabetes and obesity. Our study raises the possibility of a novel strategy with long-term thiamine supplementation, which can enhance the thermogenic competency of differentiating neck area-derived adipocytes for preventing or combating obesity.

4.
Front Cell Dev Biol ; 11: 1155673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37416800

RESUMEN

Introduction: White adipocytes store lipids, have a large lipid droplet and few mitochondria. Brown and beige adipocytes, which produce heat, are characterized by high expression of uncoupling protein (UCP) 1, multilocular lipid droplets, and large amounts of mitochondria. The rs1421085 T-to-C single-nucleotide polymorphism (SNP) of the human FTO gene interrupts a conserved motif for ARID5B repressor, resulting in adipocyte type shift from beige to white. Methods: We obtained abdominal subcutaneous adipose tissue from donors carrying FTO rs1421085 TT (risk-free) or CC (obesity-risk) genotypes, isolated and differentiated their preadipocytes into beige adipocytes (driven by the PPARγ agonist rosiglitazone for 14 days), and activated them with dibutyryl-cAMP for 4 hours. Then, either the same culture conditions were applied for additional 14 days (active beige adipocytes) or it was replaced by a white differentiation medium (inactive beige adipocytes). White adipocytes were differentiated by their medium for 28 days. Results and Discussion: RNA-sequencing was performed to investigate the gene expression pattern of adipocytes carrying different FTO alleles and found that active beige adipocytes had higher brown adipocyte content and browning capacity compared to white or inactive beige ones when the cells were obtained from risk-free TT but not from obesity-risk CC genotype carriers. Active beige adipocytes carrying FTO CC had lower thermogenic gene (e.g., UCP1, PM20D1, CIDEA) expression and thermogenesis measured by proton leak respiration as compared to TT carriers. In addition, active beige adipocytes with CC alleles exerted lower expression of ASC-1 neutral amino acid transporter (encoded by SLC7A10) and less consumption of Ala, Ser, Cys, and Gly as compared to risk-free carriers. We did not observe any influence of the FTO rs1421085 SNP on white and inactive beige adipocytes highlighting its exclusive and critical effect when adipocytes were activated for thermogenesis.

5.
J Nutr Biochem ; 119: 109385, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37230255

RESUMEN

Brown/beige adipocytes express uncoupling protein-1 (UCP1) that enables them to dissipate energy as heat. Systematic activation of this process can alleviate obesity. Human brown adipose tissues are interspersed in distinct anatomical regions including deep neck. We found that UCP1 enriched adipocytes differentiated from precursors of this depot highly expressed ThTr2 transporter of thiamine and consumed thiamine during thermogenic activation of these adipocytes by cAMP which mimics adrenergic stimulation. Inhibition of ThTr2 led to lower thiamine consumption with decreased proton leak respiration reflecting reduced uncoupling. In the absence of thiamine, cAMP-induced uncoupling was diminished but restored by thiamine addition reaching the highest levels at thiamine concentrations larger than present in human blood plasma. Thiamine is converted to thiamine pyrophosphate (TPP) in cells; the addition of TPP to permeabilized adipocytes increased uncoupling fueled by TPP-dependent pyruvate dehydrogenase. ThTr2 inhibition also hampered cAMP-dependent induction of UCP1, PGC1a, and other browning marker genes, and thermogenic induction of these genes was potentiated by thiamine in a concentration-dependent manner. Our study reveals the importance of amply supplied thiamine during thermogenic activation in human adipocytes which provides TPP for TPP-dependent enzymes not fully saturated with this cofactor and by potentiating the induction of thermogenic genes.


Asunto(s)
Adipocitos Marrones , Tiamina , Humanos , Tejido Adiposo Pardo , Proteínas de Transporte de Membrana , Diferenciación Celular , Termogénesis/genética , Proteína Desacopladora 1/genética
6.
Plants (Basel) ; 11(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36079603

RESUMEN

Free radicals contribute to the pathophysiology of degenerative diseases which increase mortality globally, including mortality in Indonesia. Amomum compactum Soland. Ex Maton fruit from the Zingiberaceae family, also known as Java cardamom, contains secondary metabolites that have high antioxidant activities. The antioxidant activity of the methanol extract of Java cardamom fruit correlates with its flavonoid and phenolic compound contents, which can be affected by different methods and durations of extraction. This study aimed to measure and compare the effects of extraction methods and durations on total flavonoid and phenolic contents (TFCs and TPCs) and subsequent antioxidant activities by the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical, ferric reducing antioxidant power (FRAP), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), and cupric ion reducing antioxidant capacity (CUPRAC) assays. Methanol extracts of Java cardamom were produced by continuous shaking (CSE), microwave-assisted (MAE), or ultrasonic-assisted extractions (UAE) for three different durations. CSE for 360 min resulted in the highest TFCs (3.202 mg Quercetin Equivalent/g dry weight), while the highest TPCs (1.263 mg Gallic Acid Equivalent/g dry weight) were obtained by MAE for 3 min. Out of the investigated methods, MAE for 3 min resulted in the highest antioxidant activity results for the extracts. We conclude that the polyphenolic antioxidant yield of Java cardamom depends on two parameters: the method and the duration of extraction.

7.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34832860

RESUMEN

White adipocytes contribute to energy storage, accumulating lipid droplets, whereas brown and beige adipocytes mainly function in dissipating energy as heat primarily via the action of uncoupling protein 1 (UCP1). Bone morphogenic protein 7 (BMP7) was shown to drive brown adipocyte differentiation in murine interscapular adipose tissue. Here, we performed global RNA-sequencing and functional assays on adipocytes obtained from subcutaneous (SC) and deep-neck (DN) depots of human neck and differentiated with or without BMP7. We found that BMP7 did not influence differentiation but upregulated browning markers, including UCP1 mRNA and protein in SC and DN derived adipocytes. BMP7 also enhanced mitochondrial DNA content, levels of oxidative phosphorylation complex subunits, along with PGC1α and p-CREB upregulation, and fragmentation of mitochondria. Furthermore, both UCP1-dependent proton leak and UCP1-independent, creatine-driven substrate cycle coupled thermogenesis were augmented upon BMP7 addition. The gene expression analysis also shed light on the possible role of genes unrelated to thermogenesis thus far, including ACAN, CRYAB, and ID1, which were among the highest upregulated ones by BMP7 treatment in both types of adipocytes. Together, our study shows that BMP7 strongly upregulates thermogenesis in human neck area derived adipocytes, along with genes, which might have a supporting role in energy expenditure.

8.
Front Cell Dev Biol ; 9: 737872, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34708041

RESUMEN

Thermogenic brown and beige adipocytes might open up new strategies in combating obesity. Recent studies in rodents and humans have indicated that these adipocytes release cytokines, termed "batokines". Irisin was discovered as a polypeptide regulator of beige adipocytes released by myocytes, primarily during exercise. We performed global RNA sequencing on adipocytes derived from human subcutaneous and deep-neck precursors, which were differentiated in the presence or absence of irisin. Irisin did not exert an effect on the expression of characteristic thermogenic genes, while upregulated genes belonging to various cytokine signaling pathways. Out of the several upregulated cytokines, CXCL1, the highest upregulated, was released throughout the entire differentiation period, and predominantly by differentiated adipocytes. Deep-neck area tissue biopsies also showed a significant release of CXCL1 during 24 h irisin treatment. Gene expression data indicated upregulation of the NFκB pathway upon irisin treatment, which was validated by an increase of p50 and decrease of IκBα protein level, respectively. Continuous blocking of the NFκB pathway, using a cell permeable inhibitor of NFκB nuclear translocation, significantly reduced CXCL1 release. The released CXCL1 exerted a positive effect on the adhesion of endothelial cells. Together, our findings demonstrate that irisin stimulates the release of a novel adipokine, CXCL1, via upregulation of NFκB pathway in neck area derived adipocytes, which might play an important role in improving tissue vascularization.

9.
Life (Basel) ; 11(6)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208364

RESUMEN

Single nucleotide polymorphisms (SNPs) in obesity-related genes, such as ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) and adiponectin (ADIPOQ), potentially increase the risk of insulin resistance, the most common metabolic dysregulation related to obesity. We investigated the association of ENPP1 SNP K121Q (rs1044498) with insulin resistance and ADIPOQ SNP + 267G > T (rs1501299) with circulating adiponectin levels in a case-control study involving 55 obese and 55 lean Javanese people residing in Yogyakarta, Indonesia. Allele frequency was determined by a chi squared test or Fisher's exact test with an expected value less than 0.05. Odds ratios and 95% confidence intervals were estimated by regression logistic analysis. The presence of the Q121 allele of ENPP1 resulted in significantly higher fasting glucose, fasting insulin levels, and HOMA-IR, as compared to homozygous K121 carriers. The risk of insulin resistance was elevated in obese individuals carrying Q121 instead of homozygous K121. Adiponectin level was significantly lower in the obese group as compared to the lean group. Obese individuals carrying homozygous protective alleles (TT) of ADIPOQ tended to have lower adiponectin levels as compared to GT and GG carriers, however, we did not find statistically significant effects of the +276G > T SNP of the ADIPOQ gene on the plasma adiponectin levels or on the development of obesity.

10.
FEBS Lett ; 595(16): 2085-2098, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34197627

RESUMEN

Brown and beige adipocytes dissipate energy by uncoupling protein 1 (UCP1)-dependent and UCP1-independent thermogenesis, which may be utilized to develop treatments against obesity. We have found that mRNA and protein expression of the alanine/serine/cysteine transporter-1 (ASC-1) was induced during adipocyte differentiation of human brown-prone deep neck and beige-competent subcutaneous neck progenitors, and SGBS preadipocytes. cAMP stimulation of differentiated adipocytes led to elevated uptake of serine, cysteine, and glycine, in parallel with increased oxygen consumption, augmented UCP1-dependent proton leak, increased creatine-driven substrate cycle-coupled respiration, and upregulation of thermogenesis marker genes and several respiratory complex subunits; these outcomes were impeded in the presence of the specific ASC-1 inhibitor, BMS-466442. Our data suggest that ASC-1-dependent consumption of serine, cysteine, and glycine is required for efficient thermogenic stimulation of human adipocytes.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adrenérgicos/farmacología , Sistema de Transporte de Aminoácidos y+/metabolismo , Aminoácidos/metabolismo , Termogénesis , Transporte Biológico/efectos de los fármacos , Humanos , Termogénesis/efectos de los fármacos
11.
Cells ; 9(4)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316277

RESUMEN

Brown adipocytes, abundant in deep-neck (DN) area in humans, are thermogenic with anti-obesity potential. FTO pro-obesity rs1421085 T-to-C single-nucleotide polymorphism (SNP) shifts differentiation program towards white adipocytes in subcutaneous fat. Human adipose-derived stromal cells were obtained from subcutaneous neck (SC) and DN fat of nine donors, of which 3-3 carried risk-free (T/T), heterozygous or obesity-risk (C/C) FTO genotypes. They were differentiated to white and brown (long-term Peroxisome proliferator-activated receptor gamma (PPARγ) stimulation) adipocytes; then, global RNA sequencing was performed and differentially expressed genes (DEGs) were compared. DN and SC progenitors had similar adipocyte differentiation potential but differed in DEGs. DN adipocytes displayed higher browning features according to ProFAT or BATLAS scores and characteristic DEG patterns revealing associated pathways which were highly expressed (thermogenesis, interferon, cytokine, and retinoic acid, with UCP1 and BMP4 as prominent network stabilizers) or downregulated (particularly extracellular matrix remodeling) compared to SC ones. Part of DEGs in either DN or SC browning was PPARγ-dependent. Presence of the FTO obesity-risk allele suppressed the expression of mitochondrial and thermogenesis genes with a striking resemblance between affected pathways and those appearing in ProFAT and BATLAS, underlining the importance of metabolic and mitochondrial pathways in thermogenesis. Among overlapping regulatory influences that determine browning and thermogenic potential of neck adipocytes, FTO genetic background has a thus far not recognized prominence.


Asunto(s)
Adipocitos Blancos/metabolismo , Adipogénesis/genética , Tejido Adiposo Pardo/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Regulación de la Expresión Génica/genética , Obesidad/metabolismo , Tejido Adiposo Blanco/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Perfilación de la Expresión Génica , Humanos , Mitocondrias/metabolismo , Consumo de Oxígeno , PPAR gamma/genética , PPAR gamma/metabolismo , Polimorfismo de Nucleótido Simple , RNA-Seq , Transducción de Señal/genética , Termogénesis/genética , Proteína Desacopladora 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...