Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Mol Neurosci ; 16: 1192833, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456523

RESUMEN

Underdeveloped breathing results from premature birth and causes intermittent hypoxia during the early neonatal period. Neonatal intermittent hypoxia (nIH) is a condition linked to the increased risk of neurocognitive deficit later in life. However, the mechanistic basis of nIH-induced changes to neurophysiology remains poorly resolved. We investigated the impact of nIH on hippocampal synaptic plasticity and NMDA receptor (NMDAr) expression in neonatal mice. Our findings indicate that nIH induces a prooxidant state that leads to an imbalance in NMDAr subunit composition favoring GluN2B over GluN2A expression and impairs synaptic plasticity. These consequences persist in adulthood and coincide with deficits in spatial memory. Treatment with an antioxidant, manganese (III) tetrakis (1-methyl-4-pyridyl)porphyrin (MnTMPyP), during nIH effectively mitigated both immediate and long-term effects of nIH. However, MnTMPyP treatment post-nIH did not prevent long-lasting changes in either synaptic plasticity or behavior. In addition to demonstrating that the prooxidant state has a central role in nIH-mediated neurophysiological and behavioral deficits, our results also indicate that targeting the prooxidant state during a discrete therapeutic window may provide a potential avenue for mitigating long-term neurophysiological and behavioral outcomes that result from unstable breathing during early postnatal life.

2.
Front Cell Neurosci ; 17: 1132121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025696

RESUMEN

Introduction: Neuronal Ca2+ signals generated through the activation of Ca2+-induced Ca2+ release in response to activity-generated Ca2+ influx play a significant role in hippocampal synaptic plasticity, spatial learning, and memory. We and others have previously reported that diverse stimulation protocols, or different memory-inducing procedures, enhance the expression of endoplasmic reticulum-resident Ca2+ release channels in rat primary hippocampal neuronal cells or hippocampal tissue. Methods and Results: Here, we report that induction of long-term potentiation (LTP) by Theta burst stimulation protocols of the CA3-CA1 hippocampal synapse increased the mRNA and protein levels of type-2 Ryanodine Receptor (RyR2) Ca2+ release channels in rat hippocampal slices. Suppression of RyR channel activity (1 h preincubation with 20 µM ryanodine) abolished both LTP induction and the enhanced expression of these channels; it also promoted an increase in the surface expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR1 and GluR2 and caused a moderate but significant reduction of dendritic spine density. In addition, training rats in the Morris water maze induced memory consolidation, which lasted for several days after the end of the training period, accompanied by an increase in the mRNA levels and the protein content of the RyR2 channel isoform. Discussion: We confirm in this work that LTP induction by TBS protocols requires functional RyR channels. We propose that the increments in the protein content of RyR2 Ca2+ release channels, induced by LTP or spatial memory training, play a significant role in hippocampal synaptic plasticity and spatial memory consolidation.

3.
bioRxiv ; 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36993632

RESUMEN

Underdeveloped breathing results from premature birth and causes intermittent hypoxia during the early neonatal period. Neonatal intermittent hypoxia (nIH) is a condition linked to the increased risk of neurocognitive deficit later in life. However, the underlying mechanistic consequences nIH-induced neurophysiological changes remains poorly resolved. Here, we investigated the impact of nIH on hippocampal synaptic plasticity and NMDA receptor (NMDAr) expression in neonatal mice. Our findings indicate that nIH induces a pro-oxidant state, leading to an imbalance in NMDAr subunit composition that favors GluN2A over GluN2B expression, and subsequently impairs synaptic plasticity. These consequences persist in adulthood and coincide with deficits in spatial memory. Treatment with the antioxidant, manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP), during nIH effectively mitigated both immediate and long-term effects of nIH. However, MnTMPyP treatment post-nIH did not prevent the long-lasting changes in either synaptic plasticity or behavior. Our results underscore the central role of the pro-oxidant state in nIH-mediated neurophysiological and behavioral deficits and importance of stable oxygen homeostasis during early life. These findings suggest that targeting the pro-oxidant state during a discrete window may provide a potential avenue for mitigating long-term neurophysiological and behavioral outcomes when breathing is unstable during early postnatal life. Highlights: Untreated immature breathing leads neonatal intermittent hypoxia (nIH).nIH promotes a pro-oxidant state associated with increased HIF1a activity and NOX upregulation.nIH-dependent pro-oxidant state leads to NMDAr remodeling of the GluN2 subunit to impair synaptic plasticity.Impaired synaptic plasticity and NMDAr remodeling caused by nIH persists beyond the critical period of development.A discrete window for antioxidant administration exists to effectively mitigate neurophysiological and behavioral consequences of nIH.

4.
Neuron ; 111(10): 1637-1650.e5, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-36917980

RESUMEN

The Ras GTPase-activating protein SYNGAP1 plays a central role in synaptic plasticity, and de novo SYNGAP1 mutations are among the most frequent causes of autism and intellectual disability. How SYNGAP1 is regulated during development and how to treat SYNGAP1-associated haploinsufficiency remain challenging questions. Here, we characterize an alternative 3' splice site (A3SS) of SYNGAP1 that induces nonsense-mediated mRNA decay (A3SS-NMD) in mouse and human neural development. We demonstrate that PTBP1/2 directly bind to and promote SYNGAP1 A3SS inclusion. Genetic deletion of the Syngap1 A3SS in mice upregulates Syngap1 protein and alleviates the long-term potentiation and membrane excitability deficits caused by a Syngap1 knockout allele. We further report a splice-switching oligonucleotide (SSO) that converts SYNGAP1 unproductive isoform to the functional form in human iPSC-derived neurons. This study describes the regulation and function of SYNGAP1 A3SS-NMD, the genetic rescue of heterozygous Syngap1 knockout mice, and the development of an SSO to potentially alleviate SYNGAP1-associated haploinsufficiency.


Asunto(s)
Empalme Alternativo , Discapacidad Intelectual , Humanos , Ratones , Animales , Regulación hacia Arriba , Empalme Alternativo/genética , Neuronas/metabolismo , Ratones Noqueados , Discapacidad Intelectual/genética , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Proteína de Unión al Tracto de Polipirimidina/genética
5.
Exp Neurol ; 344: 113808, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34256046

RESUMEN

Changed NMDA receptor (NMDAr) physiology is implicated with cognitive deficit resulting from conditions ranging from normal aging to neurological disease. Using intermittent hypoxia (IH) to experimentally model untreated sleep apnea, a clinical condition whose comorbidities include neurocognitive impairment, we recently demonstrated that IH causes a pro-oxidant condition that contributes to deficits in spatial memory and in NMDAr-dependent long-term potentiation (LTP). However, the impact of IH on additional forms of synaptic plasticity remains ill-defined. Here we show that IH prevents the induction of NMDAr-dependent LTP and long-term depression (LTD) in hippocampal brain slices from mice exposed to ten days of IH (IH10) yet spares NMDAr-independent forms of synaptic plasticity. Deficits in synaptic plasticity were accompanied by a reduction in hippocampal GluN1 expression. Acute manipulation of redox state using the reducing agent, Dithiothreitol (DTT) stimulated the NMDAr-dependent fEPSP following IH10. However, acute use of either DTT or MnTMPyP did not restore NMDAr-dependent synaptic plasticity after IH10 or prevent the IH-dependent reduction in GluN1, the obligatory subunit of the NMDAr. In contrast, MnTMPyP during IH10 (10-MnTMPyP), prevented the suppressive effects of IH on both NMDAr-dependent synaptic plasticity and GluN1 expression. These findings indicate that while the IH-dependent pro-oxidant state causes reversible oxidative neuromodulation of NMDAr activity, acute manipulation of redox state is ineffective in rescuing two key effects of IH related to the NMDAr within the hippocampus. These IH-dependent changes associated with the NMDAr may be a primary avenue by which IH enhances the vulnerability to impaired learning and memory when sleep apnea is left untreated in normal aging and in disease.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Hipoxia Encefálica/metabolismo , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Síndromes de la Apnea del Sueño/metabolismo , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/fisiología
6.
Sci Rep ; 11(1): 6005, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727588

RESUMEN

Over one billion adults worldwide are estimated to suffer from sleep apnea, a condition with wide-reaching effects on brain health. Sleep apnea causes cognitive decline and is a risk factor for neurodegenerative conditions such as Alzheimer's disease. Rodents exposed to intermittent hypoxia (IH), a hallmark of sleep apnea, exhibit spatial memory deficits associated with impaired hippocampal neurophysiology and dysregulated adult neurogenesis. We demonstrate that IH creates a pro-oxidant condition that reduces the Tbr2+ neural progenitor pool early in the process, while also suppressing terminal differentiation of adult born neurons during late adult neurogenesis. We further show that IH-dependent cell-autonomous hypoxia inducible factor 1-alpha (HIF1a) signaling is activated in early neuroprogenitors and enhances the generation of adult born neurons upon termination of IH. Our findings indicate that oscillations in oxygen homeostasis, such as those found in sleep apnea, have complex stage-dependent influence over hippocampal adult neurogenesis.


Asunto(s)
Hipocampo/metabolismo , Hipoxia/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Transducción de Señal , Animales , Femenino , Hipocampo/patología , Hipoxia/genética , Hipoxia/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Ratones Transgénicos , Células-Madre Neurales/patología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
7.
eNeuro ; 7(3)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32493757

RESUMEN

Sleep apnea causes cognitive deficits and is associated with several neurologic diseases. Intermittent hypoxia (IH) is recognized as a principal mediator of pathophysiology associated with sleep apnea, yet the basis by which IH contributes to impaired cognition remains poorly defined. Using a mouse model exposed to IH, this study examines how the transcription factor, hypoxia inducible factor 1a (HIF1a), contributes to disrupted synaptic physiology and spatial memory. In wild-type mice, impaired performance in the Barnes maze caused by IH coincided with a loss of NMDA receptor (NMDAr)-dependent long-term potentiation (LTP) in area CA1 and increased nuclear HIF1a within the hippocampus. IH-dependent HIF1a signaling caused a two-fold increase in expression of the reactive oxygen species (ROS) generating enzyme NADPH oxidase 4 (NOX4). These changes promoted a pro-oxidant state and the downregulation of GluN1 within the hippocampus. The IH-dependent effects were not present in either mice heterozygous for Hif1a (HIF1a+/-) or wild-type mice treated with the antioxidant manganese (III) tetrakis(1-methyl-4-pyridyl) porphyrin (MnTMPyP). Our findings indicate that HIF1a-dependent changes in redox state are central to the mechanism by which IH disrupts hippocampal synaptic plasticity and impairs spatial memory. This mechanism may enhance the vulnerability for cognitive deficit and lower the threshold for neurologic diseases associated untreated sleep apnea.


Asunto(s)
Hipoxia , Memoria Espacial , Animales , Hipocampo , Ratones , Plasticidad Neuronal , Especies Reactivas de Oxígeno
8.
Front Mol Neurosci ; 11: 429, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534053

RESUMEN

Triclosan, a widely used industrial and household agent, is present as an antiseptic ingredient in numerous products of everyday use, such as toothpaste, cosmetics, kitchenware, and toys. Previous studies have shown that human brain and animal tissues contain triclosan, which has been found also as a contaminant of water and soil. Triclosan disrupts heart and skeletal muscle Ca2+ signaling, damages liver function, alters gut microbiota, causes colonic inflammation, and promotes apoptosis in cultured neocortical neurons and neural stem cells. Information, however, on the possible effects of triclosan on the function of the hippocampus, a key brain region for spatial learning and memory, is lacking. Here, we report that triclosan addition at low concentrations to hippocampal slices from male rats inhibited long-term potentiation but did not affect basal synaptic transmission or paired-pulse facilitation and modified the content or phosphorylation levels of synaptic plasticity-related proteins. Additionally, incubation of primary hippocampal cultures with triclosan prevented both the dendritic spine remodeling induced by brain-derived neurotrophic factor and the emergence of spontaneous oscillatory Ca2+ signals. Furthermore, intra-hippocampal injection of triclosan significantly disrupted rat navigation in the Oasis maze spatial memory task, an indication that triclosan impairs hippocampus-dependent spatial memory performance. Based on these combined results, we conclude that triclosan exerts highly damaging effects on hippocampal neuronal function in vitro and impairs spatial memory processes in vivo.

9.
Front Cell Neurosci ; 12: 403, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30459562

RESUMEN

The induction of both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission entails pre- and postsynaptic Ca2+ signals, which represent transient increments in cytoplasmic free Ca2+ concentration. In diverse synapse types, Ca2+ release from intracellular stores contributes to amplify the Ca2+ signals initially generated by activation of neuronal Ca2+ entry pathways. Here, we used hippocampal slices from young male rats to evaluate whether pharmacological activation or inhibition of Ca2+ release from the endoplasmic reticulum (ER) mediated by ryanodine receptor (RyR) channels modifies LTD induction at Schaffer collateral-CA1 synapses. Pre-incubation of slices with ryanodine (1 µM, 1 h) or caffeine (1 mM, 30 min) to promote RyR-mediated Ca2+ release facilitated LTD induction by low frequency stimulation (LFS), but did not affect the amplitude of synaptic transmission, the profiles of field excitatory postsynaptic potentials (fEPSP) or the paired-pulse (PP) responses. Conversely, treatment with inhibitory ryanodine (20 µM, 1 h) to suppress RyR-mediated Ca2+ release prevented LTD induction, but did not affect baseline synaptic transmission or PP responses. Previous literature reports indicate that LTD induction requires presynaptic CaMKII activity. We found that 1 h after applying the LTD induction protocol, slices displayed a significant increase in CaMKII phosphorylation relative to the levels exhibited by un-stimulated (naïve) slices. In addition, LTD induction (1 h) enhanced the phosphorylation of the presynaptic protein Synapsin I at a CaMKII-dependent phosphorylation site, indicating that LTD induction stimulates presynaptic CaMKII activity. Pre-incubation of slices with 20 µM ryanodine abolished the increased CaMKII and Synapsin I phosphorylation induced by LTD, whereas naïve slices pre-incubated with inhibitory ryanodine displayed similar CaMKII and Synapsin I phosphorylation levels as naïve control slices. We posit that inhibitory ryanodine suppressed LTD-induced presynaptic CaMKII activity, as evidenced by the suppression of Synapsin I phosphorylation induced by LTD. Accordingly, we propose that presynaptic RyR-mediated Ca2+ signals contribute to LTD induction at Schaffer collateral-CA1 synapses.

10.
Front Aging Neurosci ; 9: 111, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28484388

RESUMEN

Recognition memory comprises recollection judgment and familiarity, two different processes that engage the hippocampus and the perirhinal cortex, respectively. Previous studies have shown that aged rodents display defective recognition memory and alterations in hippocampal synaptic plasticity. We report here that young rats efficiently performed at short-term (5 min) and long-term (24 h) hippocampus-associated object-location tasks and perirhinal cortex-related novel-object recognition tasks. In contrast, aged rats successfully performed the object-location and the novel-object recognition tasks only at short-term. In addition, aged rats displayed defective long-term potentiation (LTP) and enhanced long-term depression (LTD). Successful long-term performance of object-location but not of novel-object recognition tasks increased the protein levels of ryanodine receptor types-2/3 (RyR2/RyR3) and of IP3R1 in young rat hippocampus. Likewise, sustained LTP induction (1 h) significantly increased RyR2, RyR3 and IP3R1 protein levels in hippocampal slices from young rats. In contrast, LTD induction (1 h) did not modify the levels of these three proteins. Naïve (untrained) aged rats displayed higher RyR2/RyR3 hippocampal protein levels but similar IP3R1 protein content relative to young rats; these levels did not change following exposure to either memory recognition task or after LTP or LTD induction. The perirhinal cortex from young or aged rats did not display changes in the protein contents of RyR2, RyR3, and IP3R1 after exposure at long-term (24 h) to the object-location or the novel-object recognition tasks. Naïve aged rats displayed higher RyR2 channel oxidation levels in the hippocampus compared to naïve young rats. The RyR2/RyR3 up-regulation and the increased RyR2 oxidation levels exhibited by aged rat hippocampus are likely to generate anomalous calcium signals, which may contribute to the well-known impairments in hippocampal LTP and spatial memory that take place during aging.

11.
Physiology (Bethesda) ; 31(3): 201-15, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27053734

RESUMEN

In this review article, we address how activity-dependent Ca(2+)signaling is crucial for hippocampal synaptic/structural plasticity and discuss how changes in neuronal oxidative state affect Ca(2+)signaling and synaptic plasticity. We also analyze current evidence indicating that oxidative stress and abnormal Ca(2+)signaling contribute to age-related synaptic plasticity deterioration.


Asunto(s)
Calcio/metabolismo , Plasticidad Neuronal/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Sinapsis/metabolismo , Animales , Hipocampo/fisiología , Humanos , Neuronas/metabolismo
12.
Neurosci Lett ; 469(3): 375-9, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-20026184

RESUMEN

3,4-Methylenedioxymethamphetamine (MDMA), an important recreational psychostimulant drug, was examined for its ability to alter visuo-spatial learning and synaptic plasticity. Young rats received MDMA (0.2 and 2mg/kg s.c.) twice per day for 6 days while their visuo-spatial learning was tested using the Morris Water Maze. After this, animals were sacrificed and LTP induced in hippocampal slices. Visuo-spatial learning was impaired and LTP reduced, both dose-dependently, without changes in serotonin levels or paired-pulse facilitation. We conclude that low, nontoxic doses of MDMA, applied during several days, slow learning by impairing postsynaptic plasticity.


Asunto(s)
Región CA1 Hipocampal/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , N-Metil-3,4-metilenodioxianfetamina/farmacología , Envejecimiento , Animales , Región CA1 Hipocampal/fisiología , Estimulantes del Sistema Nervioso Central/administración & dosificación , Relación Dosis-Respuesta a Droga , Técnicas In Vitro , Masculino , Aprendizaje por Laberinto/fisiología , N-Metil-3,4-metilenodioxianfetamina/administración & dosificación , Plasticidad Neuronal/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Serotonina/metabolismo , Percepción Espacial/efectos de los fármacos , Percepción Espacial/fisiología , Natación , Factores de Tiempo , Percepción Visual/efectos de los fármacos , Percepción Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...