Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38611235

RESUMEN

The general requirement of replacing petroleum-derived plastics with renewable resources is particularly challenging for new technologies such as the additive manufacturing of photocurable resins. In this work, the influence of mono- and bifunctional reactive diluents on the printability and performance of resins based on acrylated epoxidized soybean oil (AESO) was explored. Polyethylene glycol di(meth)acrylates of different molecular weights were selected as diluents based on the viscosity and mechanical properties of their binary mixtures with AESO. Ternary mixtures containing 60% AESO, polyethylene glycol diacrylate (PEGDA) and polyethyleneglycol dimethacrylate (PEG200DMA) further improved the mechanical properties, water resistance and printability of the resin. Specifically, the terpolymer AESO/PEG575/PEG200DMA 60/20/20 (wt.%) improved the modulus (16% increase), tensile strength (63% increase) and %deformation at the break (21% increase), with respect to pure AESO. The enhancement of the printability provided by the reactive diluents was proven by Jacobs working curves and the improved accuracy of printed patterns. The proposed formulation, with a biorenewable carbon content of 67%, can be used as the matrix of innovative resins with unrestricted applicability in the electronics and biomedical fields. However, much effort must be done to increase the array of bio-based raw materials.

2.
Polymers (Basel) ; 14(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36236112

RESUMEN

With increasing environmental awareness, lignin will play a key role in the transition from the traditional materials industry towards sustainability and Industry 4.0, boosting the development of functional eco-friendly composites for future electronic devices. In this work, a detailed study of the effect of unmodified lignin on 3D printed light-curable acrylic composites was performed up to 4 wt.%. Lignin ratios below 3 wt.% could be easily and reproducibly printed on a digital light processing (DLP) printer, maintaining the flexibility and thermal stability of the pristine resin. These low lignin contents lead to 3D printed composites with smoother surfaces, improved hardness (Shore A increase ~5%), and higher wettability (contact angles decrease ~19.5%). Finally, 1 wt.% lignin was added into 3D printed acrylic resins containing 5 wt.% p-toluensulfonic doped polyaniline (pTSA-PANI). The lignin/pTSA-PANI/acrylic composite showed a clear improvement in the dispersion of the conductive filler, reducing the average surface roughness (Ra) by 61% and increasing the electrical conductivity by an order of magnitude (up to 10-6 S cm-1) compared to lignin free PANI composites. Thus, incorporating organosolv lignin from wood industry wastes as raw material into 3D printed photocurable resins represents a simple, low-cost potential application for the design of novel high-valued, bio-based products.

3.
Polymers (Basel) ; 13(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201892

RESUMEN

There is need for developing novel conductive polymers for Digital Light Processing (DLP) 3D printing. In this work, photorheology, in combination with Jacobs working curves, efficaciously predict the printability of polyaniline (PANI)/acrylate formulations with different contents of PANI and photoinitiator. The adjustment of the layer thickness according to cure depth values (Cd) allows printing of most formulations, except those with the highest gel point times determined by photorheology. In the working conditions, the maximum amount of PANI embedded within the resin was ≃3 wt% with a conductivity of 10-5 S cm-1, three orders of magnitude higher than the pure resin. Higher PANI loadings hinder printing quality without improving electrical conductivity. The optimal photoinitiator concentration was found between 6 and 7 wt%. The mechanical properties of the acrylic matrix are maintained in the composites, confirming the viability of these simple, low-cost, conductive composites for applications in flexible electronic devices.

4.
J Radiol Prot ; 41(4)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-33513588

RESUMEN

A study of the radon activity concentration was carried out at the School of Computer Science of 'Universidade da Coruña' (UDC, Spain). For this purpose, building location, the type of soil and the construction materials were analysed. Subsequently, the radon activity concentration was determined using two different techniques: measurement in situ with an on-site ionization chamber detector (short term) and measurement with trace detectors (long term). Based on the results obtained, and according with the Spanish Law (Spanish Official Bulletin-Boletín Oficial del Estado, of 21 December 2011, IS-33 Instruction), corrective works were performed, consisting on the installation of a forced ventilation system underneath the extent of the suspended floor in order to mitigate the high radon specific activity in the building. Four months and 3 years after the works, new measurements were carried out in order to verify the effectiveness of the new ventilation system, obtaining a decrease of the radon gas values ranging between 87% and 90%, which confirmed long term effectivity.


Asunto(s)
Contaminantes Radiactivos del Aire , Contaminación del Aire Interior , Monitoreo de Radiación , Radón , Contaminantes Radiactivos del Aire/análisis , Contaminación del Aire Interior/análisis , Computadores , Vivienda , Radón/análisis , Instituciones Académicas , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...