Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38786776

RESUMEN

Here, we investigate the correlation between the heat generated by gold nanoparticles, in particular nanospheres and nanobipyramids, and their plasmonic response manifested by the presence of Localized Surface Plasmon Resonances (LSPRs). Using a tunable laser and a thermal camera, we measure the temperature increase induced by colloidal nanoparticles in an aqueous solution as a function of the excitation wavelength in the optical regime. We demonstrate that the photothermal performances of the nanoparticles are strongly related not only to their plasmonic properties but also to the size and shape of the nanoparticles. The contribution of the longitudinal and transversal modes in gold nanobipyramids is also analyzed in terms of heat generation. These results will guide us to design appropriate nanoparticles to act as efficient heat nanosources.

3.
ACS Pharmacol Transl Sci ; 5(12): 1267-1278, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36524008

RESUMEN

The role of the NFL-TBS.40-63 peptide is to destroy the microtubule network of target glioma cancer cells. Recently, we have conceived a gold-complex biotinylated NFL-TBS.40-63 (BIOT-NFL) to form a hybrid gold nanovector (BIOT-NFL-PEG-AuNPs). This methodology showed, for the first time, the ability of the BIOT-NFL-PEG-AuNPs to target the destruction of pancreatic cancer cells (PDAC) under experimental conditions, as well as detoxification and preclinical therapeutic efficacy regulated by the steric and chemical configuration of the peptide. For this aim, a mouse transplantation tumor model induced by MIA-PACA-2 cells was applied to estimate the therapeutic efficacy of BIOT-NFL-PEG-AuNPs as a nanoformulation. Our relevant results display that BIOT-NFL-PEG-AuNPs slowed the tumor growth and decreased the tumor index without effects on the body weight of mice with an excellent antiangiogenic effect, mediated by the ability of BIOT-NFL-PEG-AuNPs to alter the metabolic profiles of these MIA-PACA-2 cells. The cytokine levels were detected to evaluate the behavior of serum inflammatory factors and the power of BIOT-NFL-PEG-AuNPs to boost the immune system.

4.
Nanoscale Adv ; 4(14): 3010-3022, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36133522

RESUMEN

This study promotes an innovative synthesis of a nanotheragnostic scaffold capable of targeting and destroying pancreatic cancer cells (PDAC) using the Biotinylated NFL-TBS.40-63 peptide (BIOT-NFL), known to enter various glioblastoma cancer cells (GBM) where it specifically destroys their microtubule network. This recently proposed methodology (P7391FR00-50481 LIV) applied to other peptides VIM (Vimentin) and TAT (Twin-Arginine Translocation) (CPP peptides) has many advantages, such as targeted selective internalization and high stability under experimental conditions, modulated by steric and chemical configurations of peptides. The successful interaction of peptides on gold surfaces has been confirmed by UV-visible, dynamic light scattering (DLS), Zeta potential (ZP) and Raman spectroscopy analyses. The cellular internalization in pancreatic ductal adenocarcinoma (PDAC; MIA PACA-2) and GBM (F98) cells was monitored by transmission electron microscopy (TEM) and showed a better cellular internalization in the presence of peptides with gold nanoparticles. In this work, we also evaluated the power of these hybrid peptide-nanoparticles as photothermal agents after cancer cell internalization. These findings envisage novel perspectives for the development of high peptide-nanotheragnostics.

7.
Nanotheranostics ; 6(2): 175-183, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34976592

RESUMEN

Flavin adenine dinucleotide (FAD) plays a key role in an extensive range of cellular oxidation-reduction reactions, which is engaged in metabolic pathways. The purpose of this study was to realize pegylated flavins formulation, named FAD and FAD-PEG diacid complex as theranostic tool in cancer therapy. For this objective, a murine breast cancer model, which was induced by mouse-derived4T1 breast cancer cells was studied to assess the therapeutic efficacy of FAD (named NP1) and FAD-PEG diacid complex (named NP2). The cytokines were monitored to evaluate the serum inflammatory factors to develop the blood cell content of different groups of nude mice. The experimental model shows that an intravenous injection of FAD (NP1) can significantly reduce tumour volume, tumour index and thymus index, and decrease neutrophils (NE), monocytes (MO), eosinophils (EO), and basophils (BA). At the same time, the content of IL-1α, IL-12P70, TNF α, IL-1ß and IL-6 was significantly reduced, and the content of IL-10 was significantly increased. These results provide the proof-of-concept for FAD as a smart adjuvant for cancer therapy and encourages their further development in the field of Nanomedicine.


Asunto(s)
Neoplasias de la Mama , Flavina-Adenina Dinucleótido , Animales , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Ratones , Ratones Desnudos , Polietilenglicoles , Medicina de Precisión
8.
Nanotheranostics ; 5(4): 405-416, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912380

RESUMEN

Flavin adenine dinucleotide (FAD) is engaged in several metabolic diseases. Its main role is being a cofactor essential for the activity of many flavoproteins, which play a crucial role in electron transport pathways in living systems. The aim of this study was to apply a pegylated flavins formulation named FAD-PEG diacide complex as theranostic pathway in cancer therapy. For this purpose, a mouse liver cancer model induced by Hepa1-6 cells was used to evaluate the therapeutic efficacy of FAD (named NP1) and FAD-PEG diacide complex (named NP2). The cytokines were applied to screen the serum inflammatory factors, to establish the blood cell content of different groups of nude mice. The highlights follows that FAD formulations (NP1; NP2) significantly suppressed the tumor growth and reduced the tumor index without effects on the body weight of mice. Furthermore, NP2 significantly reduced the serum levels of cytokines IL-6, TNF-α and IL-12 (P70). The reported results provide the proof-of-concept for the synthesis of a smart adjuvant for liver cancer therapy and support their further development in the field of nanomedicine.


Asunto(s)
Flavina-Adenina Dinucleótido , Neoplasias Hepáticas/metabolismo , Polietilenglicoles , Animales , Antioxidantes/química , Antioxidantes/farmacología , Peso Corporal/efectos de los fármacos , Línea Celular Tumoral , Citocinas/sangre , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/farmacología , Hígado/metabolismo , Masculino , Ratones , Ratones Desnudos , Polietilenglicoles/química , Polietilenglicoles/farmacología
9.
Int J Nanomedicine ; 16: 2219-2236, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33762822

RESUMEN

INTRODUCTION: In this paper, we have designed and formulated, a novel synthesis of doxorubicin (DOX) loaded bimetallic gold nanorods in which gold salt (HAuCl4) is chelated with anthracycline (DOX), diacid polyethylene-glycol (PEG-COOH) and gadolinium salt (GdCl3 * 6 H2O) to form DOX IN-Gd-AuNRs compared with DOX ON-Gd-AuNRs in which the drug was grafted onto the bimetallic pegylated nanoparticle surface by electrostatic adsorption. MATERIAL AND METHOD: The physical and chemical evaluation was performed by spectroscopic analytical techniques (Raman spectroscopy, UV-Visible and transmission electron microscopy (TEM)). Magnetic features at 7T were also measured. Photothermal abilities were assessed. Cytotoxicity studies on MIA PaCa-2, human pancreatic carcinoma and TIB-75 hepatocytes cell lines were carried out to evaluate their biocompatibility and showed a 320 fold higher efficiency for DOX after encapsulation. RESULTS: Exhaustive physicochemical characterization studies were conducted showing a mid size of 20 to 40 nm diameters obtained with low polydispersity, efficient synthesis using seed mediated synthesis with chelation reaction with high scale-up, long duration stability, specific doxorubicin release with acidic pH, strong photothermal abilities at 808 nm in the NIR transparency window, strong magnetic r1 relaxivities for positive MRI, well adapted for image guided therapy and therapeutical purpose in biological tissues. CONCLUSION: In this paper, we have developed a novel theranostic nanoparticle composed of gadolinium complexes to gold ions, with a PEG biopolymer matrix conjugated with antitumoral doxorubicin, providing multifunctional therapeutic features. Particularly, these nano conjugates enhanced the cytotoxicity toward tumoral MIAPaCa-2 cells by a factor of 320 compared to doxorubicin alone. Moreover, MRI T1 features at 7T enables interesting positive contrast for bioimaging and their adapted size for potential passive targeting to tumors by Enhanced Permeability Retention. Given these encouraging antitumoral and imaging properties, this bimetallic theranostic nanomaterial system represents a veritable promise as a therapeutic entity in the field of medicinal applications.


Asunto(s)
Doxorrubicina/uso terapéutico , Gadolinio/química , Oro/química , Nanotubos/química , Nanomedicina Teranóstica , Animales , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/uso terapéutico , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Doxorrubicina/farmacología , Liberación de Fármacos , Endocitosis , Humanos , Concentración 50 Inhibidora , Imagen por Resonancia Magnética , Ratones , Nanotubos/ultraestructura , Neoplasias/tratamiento farmacológico , Terapia Fototérmica , Espectrofotometría Ultravioleta
10.
Sci Rep ; 11(1): 3208, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547353

RESUMEN

Large protein complexes carry out some of the most complex activities in biology1,2. Such structures are often assembled spontaneously through the process of self-assembly and have characteristic chemical or biological assets in the cellular mechanisms3. Gold-based nanomaterials have attracted much attention in many areas of chemistry, physics and biosciences because of their size- and shape-dependent optic, electric, and catalytic properties. Here we report for the first time a one step synthesis in which Manganese Superoxide Dismutase protein plays a key role in the reduction of gold salts via the use of a Good's buffer (HEPES) to produce gold nanoparticles, compared to other proteins as catalase (CAT) and bovine serum albumin (BSA).We prove that this effect is directly related with the biological activities of the proteins that have an effect on the gold reduction mechanisms. Such synthesis route also induces the integration of proteins directly in the AuNPs that are intrinsically safe by design using a one-step production method. This is an important finding that will have uses in various applications, particularly in the green synthesis of novel nanomaterials.

11.
Nanoscale Adv ; 3(21): 6144-6156, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36133939

RESUMEN

Flavoproteins play an important role in the regulatory process of cell life, and they are involved in several redox reactions that regulate the metabolism of carbohydrates, amino acids, and lipids. The development of effective drug delivery systems is one of the major challenges in the fight against cancer. This study involves a nanomedicine pathway to encapsulate the cofactor flavin adenine dinucleotide (FAD) using polymeric gold nanoparticles (PEG-AuNPs) through two chemical methods of functionalization (chelation (IN); carbodiimide chemistry (ON)). These hybrid gold nanoparticles and their precursors were characterized by analytical techniques (Raman, UV-Vis, and H1-NMR spectroscopy and transmission electron microscopy (TEM)) which confirmed the grafting of the cofactor agent. The results of the computational studies (Density Functional Theory (DFT)) were in agreement with the experimental observations. We also monitored the interaction of our hybrid nanoparticle systems with small aptamers (APT) in order to validate the hypotheses on the biomolecular mechanisms and also investigate their biological efficiency on pancreatic cancer cells (MIAPaCa-2 cells).

12.
ACS Omega ; 5(44): 28483-28492, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33195898

RESUMEN

This paper proposes a fast methodology to synthesize hybrid lenalidomide gold nanoparticles. Gold (HAuCl4) is chelated with an antiangiogenic compound (lenalidomide (LENA)) and diacid poly(ethylene glycol) (PEG) as capping agent and reagent. The suggested synthesis is rapid and results in gold nanoparticles (AuNPs) with enhanced drug solubility. The binding between LENA, PEG, and Au(III) ions forms hybrid nanovectors named LENA IN PEG-AuNPs, which were characterized by different spectroscopic techniques (Raman and UV-vis), transmission electron microscopy (TEM), and compared with LENA ON PEG-AuNPs, in which the drug was grafted onto gold surface by carbodiimide chemistry (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide, EDC/NHS). The effective drug delivery under pH conditions was also reached, combined with doxorubicin (DOX) to improve the synergic chemotherapy and stability under experimental conditions. For biomedical purposes, hybrid gold nanocarriers were conjugated with folic acid (FA), which is specifically overexpressed in cancer cells. This paper will be very important in the domain of therapeutic gold complex, paving the way for reaching progress of novel drug carrier synthesis in nanomedicine.

13.
Bioconjug Chem ; 29(10): 3352-3361, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30215508

RESUMEN

Galectins (Gal) are a family of glycan-binding proteins characterized by their affinity for ß-galactosides. Galectin-1 (Gal-1), a dimeric lectin with two galactoside-binding sites, regulates cancer progression and immune responses. Coordination chemistry has been engaged to develop versatile multivalent neoglycoconjugates for binding Gal-1. In this study we report a fast and original method to synthesize hybrid gold nanoparticles in which a hydrochloride lactose-modified chitosan, named CTL, is mixed with dicarboxylic acid-terminated polyethylene glycol (PEG), leading to shell-like hybrid polymer-sugar-metal nanoparticles (CTL-PEG-AuNPs). The aim of this paper is to preliminarily study the interaction of the CTL-PEG-AuNPs with a target protein, namely, Gal-1, under specific conditions. The molecular interaction has been measured by Transmission Electron Microscopy (TEM), UV-vis, and Raman Spectroscopy on a large range of Gal-1 concentrations (from 0 to 10-12 M). We observed that the interaction was strongly dependent on the Gal-1 concentration at the surface of the gold nanoparticles.


Asunto(s)
Quitosano/química , Galectina 1/química , Oro/química , Lactosa/química , Polietilenglicoles/química , Humanos , Nanopartículas del Metal/química , Microscopía Electrónica de Transmisión , Espectrofotometría Ultravioleta , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...