Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(11)2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-38004816

RESUMEN

Cyclosporiasis, caused by the coccidian parasite Cyclospora cayetanensis, has emerged as an increasing global public health concern, with the incidence of laboratory-confirmed domestically acquired cases in the US exceeding 10,000 since 2018. A recently published qPCR assay (Mit1C) based on a mitochondrial target gene showed high specificity and good sensitivity for the detection of C. cayetanensis in fresh produce. The present study shows the integration and verification of the same mitochondrial target into a fully automated and streamlined platform that performs DNA isolation, PCR, hybridization, results visualization, and reporting of results to simplify and reduce hands-on time for the detection of this parasite. By using the same primer sets for both the target of interest (i.e., Mit1C) and the internal assay control (IAC), we were able to rapidly migrate the previously developed Mit1C qPCR assay into the more streamlined and automated format Rheonix C. cayetanensisTM Assay. Once the best conditions for detection were optimized and the migration to the fully automated format was completed, we compared the performance of the automated platform against the original "bench top" Mit1C qPCR assay. The automated Rheonix C. cayetanensis Assay achieved equivalent performance characteristics as the original assay, including the same performance for both inclusion and exclusion panels, and it was able to detect as low as 5 C. cayetanensis oocysts in fresh produce while significantly reducing hands-on time. We expect that the streamlined assay can be used as a tool for outbreak and/or surveillance activities to detect the presence of C. cayetanensis in produce samples.

2.
Microorganisms ; 11(6)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37375008

RESUMEN

Cyclospora cayetanensis is a foodborne protozoan parasite that causes outbreaks of diarrheal illness (cyclosporiasis) with clear seasonality worldwide. In the environment, C. cayetanensis oocysts are very robust, and contact with contaminated soil may serve as an important vehicle in the transmission of this organism, and it is considered a risk factor for this infection. The present study evaluated a flotation concentration method, previously shown to provide the best detection results when compared with DNA isolation directly from soil samples, in two main types of farm soil, silt loam soil and sandy clay loam, as well as in commercial potting mix samples inoculated with different numbers of C. cayetanensis oocysts. The flotation method was able to detect as few as 10 oocysts in 10 g of either type of farm soil without modifications, but needed an extra wash and samples of reduced size for the processing of the commercial potting mix to be able to detect 20 oocysts/5 g. A recently modified real-time PCR method for the detection of C. cayetanensis based on a mitochondrial gene target was also evaluated using selected samples of each type of soil. This comparative study confirmed that the concentration of oocysts in soil samples by flotation in high-density sucrose solutions is a sensitive method that can detect low numbers of oocysts in different types of soil.

3.
Microorganisms ; 10(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35889150

RESUMEN

Cyclospora cayetanensis is a protozoan parasite that causes foodborne outbreaks of diarrheal illness (cyclosporiasis) worldwide. Contact with soil may be an important mode of transmission for C. cayetanensis and could play a role in the contamination of foods. However, there is a scarcity of detection methods and studies for C. cayetanensis in soil. Traditional parasitology concentration methods can be useful for the detection of C. cayetanensis, as found for other protozoa parasites of similar size. The present study evaluated a concentration method using flotation in saturated sucrose solution, subsequent DNA template preparation and qPCR following the Bacteriological Analytical Manual (BAM) Chapter 19b method. The proposed flotation method was compared to three commercial DNA isolation kits (Fast DNATM 50 mL SPIN kit for soil (MP Biomedicals, Irvine, CA, USA), Quick-DNATM Fecal/Soil Microbe Midiprep kit (Zymo Research, Irvine, CA, USA) and DNeasy® PowerMax® Soil Kit (Qiagen, Hilden, Germany)) for the isolation and detection of DNA from experimentally seeded C. cayetanensis soil samples (5−10 g with 100 oocysts). Control unseeded samples were all negative in all methods. Significantly lower cycle threshold values (CT) were observed in the 100 oocyst C. cayetanensis samples processed via the flotation method than those processed with each of the commercial DNA isolation kits evaluated (p < 0.05), indicating higher recovery of the target DNA with flotation. All samples seeded with 100 oocysts (n = 5) were positive to the presence of the parasite by the flotation method, and no inhibition was observed in any of the processed samples. Linearity of detection of the flotation method was observed in samples seeded with different levels of oocysts, and the method was able to detect as few as 10 oocysts in 10 g of soil samples (limit of detection 1 oocyst/g). This comparative study showed that the concentration of oocysts in soil samples by flotation in high-density sucrose solutions is an easy, low-cost, and sensitive method that could be implemented for the detection of C. cayetanensis in environmental soil samples. The flotation method would be useful to identify environmental sources of C. cayetanensis contamination, persistence of the parasite in the soil and the role of soil in the transmission of C. cayetanensis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...