Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1714: 464582, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38157665

RESUMEN

Peak detection for chromatograms, including the detection of peak retention times, peak start locations, and peak end locations, is an important processing step for extracting peak information that is used for chemical recognition. Compared to benchtop gas chromatographs, the chromatograms generated by microscale gas chromatographs (µGCs) often contain higher noise levels, peak overlap, peak asymmetry, and both positive and negative chromatographic peaks, increasing the challenges for peak detection. This paper reports an automatic peak detection algorithm based on continuous wavelet transform (CWT) for chromatograms generated by multi-detector µGCs. The relationship between chemical retention time and peak width is leveraged to differentiate chromatographic peaks from noise and baseline drift. Special features in the CWT coefficients are leveraged to detect peak overlap and asymmetry. For certain detectors that may generate positive and negative chromatographic peaks, the peaks cannot be independently detected reliably, but the peak information can be well extracted using peak information generated by other in-line single-polarity detectors. The implemented algorithm provided a true positive rate of 97.2 % and false discovery rate of 7.8 % for chromatograms generated by a µGC with three integrated detectors, two capacitive and one photoionization. The chromatograms included complex scenarios with positive and negative chromatographic peaks, up to five consecutive overlapping peaks, peak asymmetry factor up to 24, and signal-to-noise ratios spanning 9-2800.


Asunto(s)
Algoritmos , Análisis de Ondículas , Cromatografía de Gases/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA