Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Toxics ; 12(2)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38393205

RESUMEN

Land use has a great impact on soil dynamics. The soils of various land use systems in Central Karakoram have been under immense pressure in the recent past due to certain anthropogenic activities such as land use practices and land use cover changes. These influences have an impact on the spatial distribution of metallic elements (MEs) in the soils of various land uses. Herein, we investigated the occurrence of the MEs, copper (Cu), zinc (Zn), and nickel (Ni), in soils of various land uses such as the permafrost, pasture, forest, and agricultural lands of the Central Karakorum region. The MEs were extracted in exchangeable, adsorbed, organically bound, carbonated, precipitated, and residual forms. The concentrations of MEs showed a significant dependence on the extraction method used, and the extraction trend followed the order of EDTA > HNO3 > KNO3 > NaOH > H2O. Zn showed the highest concentration compared to Ni and Cu in all extractions, whereas the land uses' ME concentration followed the order of agricultural land > permafrost > forest > pasturelands. The highest values of total Zn, Ni, and Cu were 712 ± 01 mg/kg, 656 ± 02 mg/kg, and 163 ± 02 mg/kg, respectively, in agricultural soil. The ME concentration showed significant variations between different land uses, and the highest concentration was noted in agricultural soil. Zn was found to be a dominant ME compared to Ni and Cu. We believe this effort will provide opportunities for scholars to investigate MEs around the globe.

2.
Environ Geochem Health ; 45(8): 5915-5925, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37184720

RESUMEN

Heavy metals (HMs) are extensively found in occupationally exposed miners and industrial workers, which may cause serious health-related problems to the large workforce. In order to evaluate the impact of these toxic pollutants, we have investigated the effect of cadmium (Cd), chromium (Cr), copper (Cu), and lead (Pb) concentration on exposed workers of mining, and woolen textile mill and compared the findings with unexposed individuals. From each category like exposed workers (mining, and woolen mill textile site) and unexposed individuals, 50 blood samples were taken. The occurrence of HMs in a sample was investigated through atomic absorption spectrometry while the oxidative stress marker malondialdehyde (MDA) and antioxidant enzyme statuses such as superoxide dismutase (SOD) and catalase (CAT) were analyzed in exposed and control samples. The results showed significant (p < 0.05) variation in Cd, Cr, Cu, and Pb levels in exposed and control samples. The concentration of Cd in the blood of WMWs, KMWs, and control group was 5.75, 3.89, and 0.42 µg/dL, respectively. On the other hand, the concentration of Pb in the blood of WMWs, MWs, and control was 32.34, 24.39, and 0.39 µg/dL while the concentrations of Cr and Cu in the blood of WMWs, MWs, and control group were 11.61 and 104.14 µg/dL, 4.21 and 113.21 µg/dL, 0.32 and 65.53 µg/dL, respectively. An increase in MDA was recorded in the exposed workers' group as compared to control subjects, whereas SOD and CAT activities decreased. Meanwhile, MDA was significantly and positively (p < 0.01) correlated with HMs, while negative significant correlations were found among HMs with SOD and CAT.


Asunto(s)
Cadmio , Metales Pesados , Cadmio/toxicidad , Cadmio/análisis , Pakistán , Plomo/toxicidad , Plomo/análisis , Metales Pesados/análisis , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Cromo/toxicidad , Cromo/análisis , Antioxidantes/metabolismo
3.
Environ Sci Pollut Res Int ; 30(13): 37208-37218, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36571694

RESUMEN

Iodine is an essential microelement for humans and its deficiency leads to iodine deficiency disorder (IDD) which is a common problem faced by people in hilly areas. Biofortification of iodine is an option to overcome the IDD problem. Herein, we investigated the iodine uptake and accumulation in the edible portion of vegetables such as Brassica napus (BNP) and Brassica pekinensis (BPK) which were grown on two different soils such as sandy soil (SS) and silty loam soil (SLS) with different concentrations of iodine application (used in sodium iodide form) such as 0 ppm, 50 ppm, and 100 ppm. The concentration of iodine was determined by the oxidation of iodide, and nutrients were examined by double acid digestion. Different concentrations of iodine were noticed in silty loam and sandy soils, roots, and shoots of BNP and BPK, while the concentration follows the order: soils > roots > shoots. Iodine concentrations in the roots of BNP and BPK ranged from 46 to 223.7 µg/g which shows a strong correlation with other soil nutrients. Moreover, a large amount of iodine was lost due to the leaching. It is concluded that the biofortification of iodine increases its concentration in Brassica species. This work provides a reference for the iodine biofortification in plant species which will be helpful to control IDD.


Asunto(s)
Brassica napus , Brassica , Yodo , Contaminantes del Suelo , Humanos , Suelo , Biofortificación , Suplementos Dietéticos
4.
ACS Omega ; 7(45): 40911-40919, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36406554

RESUMEN

Herein, we report a solution-processable memristive device based on bismuth vanadate (BiVO4) and titanium dioxide (TiO2) with gallium-based eutectic gallium-indium (EGaIn) and gallium-indium-tin alloy (GaInSn) liquid metal as the top electrode. Scanning electron microscopy (SEM) shows the formation of a nonporous structure of BiVO4 and TiO2 for efficient resistive switching. Additionally, the gallium-based liquid metal (GLM)-contacted memristors exhibit stable memristor behavior over a wide temperature range from -10 to +90 °C. Gallium atoms in the liquid metal play an important role in the conductive filament formation as well as the device's operation stability as elucidated by I-V characteristics. The synaptic behavior of the GLM-memristors was characterized, with excellent long-term potentiation (LTP) and long-term depression (LTD) linearity. Using the performance of our device in a multilayer perceptron (MLP) network, a ∼90% accuracy in the handwriting recognition of modified national institute of standards and technology database (MNIST) was achieved. Our findings pave a path for solution-processed/GLM-based memristors which can be used in neuromorphic applications on flexible substrates in a harsh environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...