Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 7(3): e32529, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22457717

RESUMEN

Protected areas (PAs) are a cornerstone of conservation efforts and now cover nearly 13% of the world's land surface, with the world's governments committed to expand this to 17%. However, as biodiversity continues to decline, the effectiveness of PAs in reducing the extinction risk of species remains largely untested. We analyzed PA coverage and trends in species' extinction risk at globally significant sites for conserving birds (10,993 Important Bird Areas, IBAs) and highly threatened vertebrates and conifers (588 Alliance for Zero Extinction sites, AZEs) (referred to collectively hereafter as 'important sites'). Species occurring in important sites with greater PA coverage experienced smaller increases in extinction risk over recent decades: the increase was half as large for bird species with>50% of the IBAs at which they occur completely covered by PAs, and a third lower for birds, mammals and amphibians restricted to protected AZEs (compared with unprotected or partially protected sites). Globally, half of the important sites for biodiversity conservation remain unprotected (49% of IBAs, 51% of AZEs). While PA coverage of important sites has increased over time, the proportion of PA area covering important sites, as opposed to less important land, has declined (by 0.45-1.14% annually since 1950 for IBAs and 0.79-1.49% annually for AZEs). Thus, while appropriately located PAs may slow the rate at which species are driven towards extinction, recent PA network expansion has under-represented important sites. We conclude that better targeted expansion of PA networks would help to improve biodiversity trends.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Animales , Extinción Biológica , Plantas/clasificación
2.
Conserv Biol ; 25(2): 305-15, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21284728

RESUMEN

Networks of sites of high importance for conservation of biological diversity are a cornerstone of current conservation strategies but are fixed in space and time. As climate change progresses, substantial shifts in species' ranges may transform the ecological community that can be supported at a given site. Thus, some species in an existing network may not be protected in the future or may be protected only if they can move to sites that in future provide suitable conditions. We developed an approach to determine appropriate climate-change adaptation strategies for individual sites within a network that was based on projections of future changes in the relative proportions of emigrants (species for which a site becomes climatically unsuitable), colonists (species for which a site becomes climatically suitable), and persistent species (species able to remain within a site despite the climatic change). Our approach also identifies key regions where additions to a network could enhance its future effectiveness. Using the sub-Saharan African Important Bird Area (IBA) network as a case study, we found that appropriate conservation strategies for individual sites varied widely across sub-Saharan Africa, and key regions where new sites could help increase network robustness varied in space and time. Although these results highlight the potential difficulties within any planning framework that seeks to address climate-change adaptation needs, they demonstrate that such planning frameworks are necessary, if current conservation strategies are to be adapted effectively, and feasible, if applied judiciously.


Asunto(s)
Aves/fisiología , Cambio Climático , Conservación de los Recursos Naturales , Adaptación Fisiológica , África del Sur del Sahara , Animales , Biodiversidad , Especies en Peligro de Extinción , Geografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...